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ABSTRACT 
 
The quantitative analysis of illicit materials using Raman spectroscopy is of widespread interest for law enforcement 
and healthcare applications.  One of the difficulties faced when analysing illicit mixtures is the fact that the narcotic can 
be mixed with many different cutting agents.  This obviously complicates the development of quantitative analytical 
methods.  In this work we demonstrate some preliminary efforts to try and account for the wide variety of potential 
cutting agents, by discrimination between the target substance and a wide range of excipients.  Near-infrared Raman 
spectroscopy (785 nm excitation) was employed to analyse 217 samples, a number of them consisting of a target analyte 
(acetaminophen) mixed with excipients of different concentrations by weight.  The excipients used were sugars 
(maltose, glucose, lactose, sorbitol), inorganic materials (talcum powder, sodium bicarbonate, magnesium sulphate), and 
food products (caffeine, flour).  The spectral data collected was subjected to a number of pre-treatment statistical 
methods including first derivative and normalisation transformations, to make the data more suitable for analysis.  
Various methods were then used to discriminate the target analytes, these included Principal Component Analysis 
(PCA), Principal Component Regression (PCR) and Support Vector Machines. 
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1. INTRODUCTION 
 
Many spectroscopic tools have been incorporated into the field of forensic analyses.1,2  Since the early 1990’s, 
technological advances in electronics; as well as materials have catapulted analytical methods, which were previously 
laboratory based into the field of in-situ investigations, one such method is Raman spectroscopy.3,4  Based on the Raman 
effect, this technique provides a wealth of information about narcotic samples.  Inelastically (or Raman) scattered light 
from a sample is analysed using a spectrometer and displayed in the form of a spectrum from which valuable 
information on the molecular structure and functional groups present may be obtained.5,6  A change in the polarisability 
of a molecule is the only condition to be met for a substance to be Raman active.  This requirement is unique to Raman 
spectroscopy and complimentary to IR spectroscopy, which requires a change in dipole moment for the substance to be 
IR active.7,8 Although previously seen as simply a complimentary tool to IR spectroscopy, which was difficult to 
implement experimentally, technological advances such as diode lasers, sensitive CCD detectors, and inexpensive 
computing, have helped Raman spectroscopy to evolve into a rapid, non-contact, easily implemented technique.  
However, even with all these advances, the process of illicit narcotic analysis using Raman spectroscopy still faces 
several difficulties.  Some of the materials used to bulk and/or bind narcotic active ingredients can be fluorescent thus 
obscuring the weaker Raman signal.9  Using longer wavelength excitation minimises this effect but it still remains a 
problem in positive narcotic identification and quantification.  In addition illicit narcotics can be mixed with several 
different excipients, all of which will have different Raman scattering efficiencies which can cause some (or all) of the 
Raman bands of the illicit narcotic to be obscured, making the process of identification or quantification more difficult.  
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The goal of this work is to determine the utility of Raman spectroscopy for identifying and quantifying the presence of a 
target analyte in solid mixtures.  Specifically we aim to study the conditions that pertain to illicit narcotics where the 
mixtures can comprise of a wide range of different materials with a single analyte (e.g. cocaine).  For Raman 
spectroscopy to be an effective tool in quantitative forensics analysis, it is necessary to demonstrate that it can deal with 
spectral differences due to sample variability; the principal variances encountered are baseline changes due to 
fluorescence/scatter, and overlapping Raman bands.  To make use of Raman spectroscopy effectively, the use of 
multivariate analysis techniques is required to extract the maximum amount of practical information from the spectra, 
while taking into account the various interferences that are encountered in Raman spectroscopy.   
 
In this work we investigate the efficacy of Raman spectroscopy and chemometrics for the identification and 
quantification of a target analyte in solid mixtures.  We compare the efficiency of chemometric methods with machine 
learning (ML) techniques such as Support Vector Machine (SVM).    
 

2. EXPERIMENTAL 
 
 

Excipient Abbreviation 
Baby Powder BP 

Caffeine CAF 
Cellulose CEL 

Flour FLO 
Glucose GLU 
Lactose LAC 

Magnesium Sulphate Mg 
Maltose MAL 
Sorbitol SOR 

Talc TAL 
 

Table 1:  Abbreviations used for the excipients used in the study. 

2.1. Apparatus and materials 
The target analyte for this model system was acetaminophen (4-acetamidophenol 98% – Acros Organics).  The bulk of 
the excipients used were of reagent grade and procured from the Inorganic Chemistry Dept., NUIG and used as 
received.  The sample set (see Table 2) consisted of the target analyte present in various concentrations, mixed with 
common narcotic excipients. 9  The dataset also contained a subset of pure inorganic materials.  The target analyte and 
excipients were carefully weighed and mixed using an agate mortar and pestle, ensuring homogeneity throughout the 
sample.  Samples were transferred to a sample holder, which comprised of 3 mm depth cylindrical holes drilled into 5 
mm deep microscope sized stainless steel plate. 
 
The data was collected using a Horiba Jobin Yvon Labram Infinity at 785nm excitation, within the range of 350-2000 
cm-1.  The near infrared laser was used to minimise the effects of fluorescent materials on the spectra.  The data was 
viewed and collected through a x10 power objective.  The exposure times of the mixtures were tailored to produce the 
optimal spectrum in a reasonable time; hence these intervals differed for different samples and concentrations.  These 
times ranged from 3 to 30 seconds per scan depending on the sample being examined e.g. a strong Raman scatterer such 
as crystallised 4-nitroaniline had one of the lowest exposure times of 3 seconds as this was sufficient to obtain a 
spectrum with strong, well resolved peaks.   A pure spectrum of naphthalene and a luminous intensity standard (SRM 
2241) were taken for every three target-excipient samples examined.  To reduce sampling effects (i.e. local 
inhomogeneity), each sample was analysed at sixty-four different places on the sample.10,11  An eight by eight grid was 
used to take Raman spectra over a large area at each sample.  Each set of sixty-four spectra were co-added, averaged 
and corrected for instrument response.  For pure samples a sixteen-point grid (four by four) was used. 
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Table 2:  Percentage of target (Acetaminophen) in each of the most common narcotic excipients. 

2.2. Software and hardware 
Chemometric analysis was performed using Unscrambler (Version 8.0 1986-2003 Camo Process AS, Oslo, Norway) 
multivariate analysis software package.  All analyses were carried out on desktop PC’s.  A MATLAB (Version 
7.0.0.19920 (R14), The Mathworks Inc.) code was specifically written for this data which both reduced (averaged) each 
set of sixty-four spectra to one whilst simultaneously correcting it for instrument response.7,12,13  The full dataset 
comprised of 217 samples, which were then randomly shuffled before embarking on any data analysis.   
 

2.3. Data Analysis 
Within the randomly shuffled dataset 22-fold, “leave 10 out” cross-validation is done on the data, using different 
classification algorithms.  In cross-validation, the dataset is divided into 22 equal segments or folds, a model is built 
using all the data from folds 2 to 22, and this model is then used to predict the data from the first fold.  Then, the second 
fold is left out of the training  (which is now based on folds 1 and 3-22) and used as the test dataset – this process is 
repeated until all folds have been held out as a test set. In this way, the classification method is tested on all 217 samples 
of the dataset.  
 

2.4. Chemometrics 
Principal component analysis (PCA) is a mathematical method that involves transforming a number of possibly 
correlated variables into a smaller number of uncorrelated variables or principal components.  The first principal 
component accounts for the largest amount of variation in the data, the second component accounts for the second 
largest amount of variation, and so forth.  Using the information provided by PCA analysis allows the building of an 
improved model, by identifying unwanted contributory effects such as background fluorescence and residual laser 
scatter.  The dataset was subjected to four different types of pre-processing, as outlined in Table 3.   In an attempt to 
remove the domination of the intense Raman scatterers in the sample set, a maximum normalisation was employed.  If 
all samples are positive when the normalisation is applied, the maximum Raman band intensity is set at +1.  This 
method divides each sample row by its maximum absolute value.  Performing this step eliminated the large intensity 
difference between the spectra.  A Savitzky-Golay first derivative, seven-point averaging algorithm was applied to the 
raw data set.  This algorithm fits a polynomial to each successive curve segment, thus replacing the original values with 
more regular variations.  The scores identified in PCA were used as predictors in a multiple linear regression.   
 

Samples Pre-Processing Code 
All Raw – No pre-processing RD-1 
All First Derivative FD-1 
All Maximum Normalisation ND-1 
All First derivative + Maximum Normalisation FDN-1 

Table 3:  Table of pre-processing methods applied to dataset and corresponding code. 

% ACETAMINOPHEN IN: 
BP CAF CEL FLO GLU LAC MG MAL SOR TAL 
50 50 50 50 50 50 50 50 50 49 
20 20 20 20 20 20 20 19 20 20 
15 15 15 15 15 15 15 14 15 15 
10 10 10 - - 10 10 10 10 10 
9 9 9 9 9 9 9 9 9 9 
8 8 8 8 8 8 8 8 - - 
7 7 7 7 7 7 7 7 7 7 
6 6 6 6 6 6 6 6 6 6 
5 5 5 5 5 5 5 5 5 5 
0 0 0 0 0 0 0 0 0 0 
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2.5. Machine Learning  
Machine Learning, in its broadest sense, refers to the study of computer algorithms that improve through experience.  In 
spectral classification, the goal of machine learning is to build a model of the how the Raman spectrum of a sample 
relates to the presence or absence of a target substance in that sample.  The work presented here focuses specifically on 
the use of machine learning for the detection of acetaminophen.  The following sections provide a brief description of 
the machine learning methods that were used. 
 

2.5.1. Support Vector Machine 
The SVM14 is a powerful machine learning tool that is capable of representing non-linear relationships and producing 
models that generalise well to unseen data. For binary classification, a linear SVM (the simplest form of SVM) finds an 
optimal linear separator between the two classes of data, in this case acetaminophen and non-acetaminophen samples.  
This optimal separator is the one that results in the widest margin of separation between the two classes, as a wide 
margin implies that the classifier is better able to classify unseen spectra.  Typically, it is not possible to find a classifier 
that completely separates the data.  In fact, efforts to produce a classifier that completely separates the data could result 
in an over fitted model that performs poorly on test data.  In order to regulate this overfitting, SVMs have a complexity 
parameter, C, which determines the trade-off between choosing a large-margin classifier and the amount by which 
misclassified samples are tolerated.  A higher value of C means that more importance is attached to minimising the 
amount of misclassification than to finding a wide margin model.  
To handle non-linear data, kernels (e.g. Radial Basis Function (RBF), Polynomial or Sigmoid) are introduced to map the 
original data to a new feature space in which a linear separator can be found.  In addition to the C parameter, each kernel 
may have a number of parameters associated with it.  For the experiments reported here, two kernels were used: the 
RBF kernel, in which the kernel width (σ) can be changed, and the Polynomial kernel, which also has one parameter – 
degree (d).  Note that the linear kernel is equivalent to a Polynomial kernel of degree one and corresponds to the original 
input space.  The SVM is considered useful for handling high dimensional data and should therefore be suited to the 
spectral domain.  See Cristianini and Shawe-Taylor for more details on SVM classification. 
 

2.5.2. k-Nearest Neighbours 
k-Nearest Neighbours (kNN)15 is a learning algorithm which classifies a test sample by firstly obtaining the class of the 
k samples that are the closest to the test sample. The majority class of these nearest samples (or nearest single sample 
when k = 1) is returned as the prediction for that test sample. Various measures may be used to determine the distance 
between a pair of samples. In these experiments, the Euclidean distance measure was used.  In practical terms, each 
Raman spectrum is compared to every other spectrum in the dataset.  At each spectral data point (wavenumber axis) the 
difference in intensity between the two spectra is measured (distance).  The sum of the squared distances for all the data 
points (full spectrum) gives a numerical measure of how close the spectra are i.e. nearest neighbours. 
 

2.5.3. C4.5 
The C4.5 decision tree16 algorithm generates a series of “if-then” rules that are represented as a tree structure.  Each 
node in the tree corresponds to a test of the intensity at a particular wavenumber.  The result of a test at one node 
determines which node in the tree is checked next until finally, a leaf node is reached.  Each leaf specifies the class to be 
returned if that leaf is reached. 
 

2.5.4. Ripper 
RIPPER17 (Repeated Incremental Pruning to Produce Error Reduction) is an inductive rule-based learner that builds a 
set of prepositional rules that identify classes while minimising the amount of error.  The number of training examples 
misclassified by the rules defines the error. RIPPER was developed with the goal of handling large noisy datasets 
efficiently whilst also achieving good generalisation performance. 
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2.5.5. Naïve Bayes 
Naïve Bayes18 is a classification technique, which for each class calculates the probability that the test sample belongs to 
that class, given the intensities at each point in the spectrum.  It then returns its prediction as the class with the highest 
probability.  One potential failing of this approach is that it is based on the assumption that each attribute (i.e. 
wavenumber) is independent, which is not true for spectral data.  However, it has been shown in other application 
domains that Naïve Bayes classifiers can work well, even when this independence assumption does not hold.19 
 

3. RESULTS & DISCUSSION 
 
We first examined the data set using traditional chemometrics and followed a step-by-step procedure to investigate the 
factors that will influence the methods for identifying and quantifying acetaminophen in mixtures.  
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Figure 1: A) Raw dataset showing the varying baseline offsets of some samples.  B) 4-Nitroaniline – raw – intense Raman 

scatterer. 

 
The collection of spectra above (Figure 1) represents some of the raw data collected.  No pre-processing has been 
attempted and no baseline corrections have been made. There is an obviously large variation in Raman intensity 
between samples (Figure 1 A).  The 4-nitroaniline sample (Figure 1 B) is a very strong Raman scatterer with an 
intensity of more than ten times that of any other sample investigated.  In addition, the samples in figure 1 A were 
recorded using much longer exposure times (20-30 seconds) than the 4-Nitroaniline (3 seconds).  This highlights one of 
the difficulties associated with using Raman spectroscopy, which is the wide variance in spectral intensity, which must 
be taken into account when developing analytical methods.  The second noticeable effect in the raw Raman spectra is 
the variable baseline, which dominates some samples.  This can be attributed to either fluorescence or residual laser 
scatter, and it increases proportionally with the exposure time, as does the Raman signal.  Longer exposure times are 
needed for samples with these interferences in order to obtain defined Raman peaks, however this also increases the 
impact of sloping background and baseline offset in multivariate analysis.  In order to identify the variation in the 
Raman dataset due to baseline effects and intensity effects PCA was carried out on the uncorrected spectra (Figure 2).  
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Figure 2: A) PCA Scores loading B) PCA x-loadings spectrum PC1 C) PCA x-loadings spectrum PC2 D) PCA x-loadings 
spectrum PC3 for RD-1 dataset. 

 
The scores plot between the 2 major components (Fig. 2A) shows that there is very little separation of samples 
according to the target analyte concentration.  PC1 (Fig. 2B) essentially describes underlying baseline effects and 
accounts for a lot of variation (85% explained variance).  Separation along PC1 is due to the baseline effect.   
PC2, 10% explained variance, (Figure 2 C) essentially represents 4-Nitroaniline, the most intense Raman scatterer 
sampled (Figure 1B).  The third PC, 1% explained variance,  (Fig 2 D) is due to pure potassium iodate (another intense 
Raman scatterer) with another baseline contribution.  These 3 PC’s represent 96% of the spectral variation in the raw 
spectral data, which hinders the identification of the target analyte.  It is therefore obvious from PCA that the data needs 
to be corrected for both baseline and Raman intensity effects before it can be used for analyte classification.   
 
The only automated and reproducible method for background correction, which is available to us at the moment, is the 
use of derivatisation.  While this has drawbacks in making the data more difficult to understand, it does enable the 
reproducible removal of baseline effects.  Therefore, we performed a first derivative to remove the baseline effects and 
the PCA model run once more under identical conditions.  PC1 (not shown) in this case now accounts for 68% of the 
spectral variation, and when examined is seen to be due to the 4-nitroaniline sample (strong Raman scatterer).  The large 
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disparity due to the background effects was eliminated.  However, the dominance of PC1 due to Raman intensity effects 
still needs to be accounted for, otherwise it will have an overly large influence on the chemometric process.   
 
The next step was to remove the absolute Raman intensity effects by normalizing each Raman spectrum to the most 
intense peak.  This should remove the large weightings being assigned to individual Raman spectra like that of 4-
nitroanailine.  PCA was repeated on this dataset and the scores plot for the first 2 PC’s is shown in Figure 3.   
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Figure 3:  Scores plot of PC1 vs. PC2, on 1st derivative and normalised dataset showing separation of samples based on 
acetaminophen concentration. 

 
This scores plot demonstrates the effect of background removal and the normalisation of the dataset.  There is now a 
clear distinction between samples with no target analyte present and those with the acetaminophen present.  The zero 
acetaminophen concentration samples are found at negative PC1 scores whilst those most heavily concentrated with the 
target analyte (50-100% range) are found at positive PC1 scores.  The smaller concentrations (5-10%) lie scattered in 
between the two sets.  PC1 which contributes the most to the model (26%) is related to acetaminophen, as can be seen 
by comparing the loadings plot with the 1st derivative plot of the Raman spectrum of acetaminophen Figure 4.  The 
reason for the separation of samples along PC2 is less clear-cut and examination of the loadings plot (not shown) and 
Raman spectra did not reveal any significant explanation.  However, it does appear that the some of the separation is 
related to the sugar based excipients, with predominately high concentration glucose mixtures in the upper two 
quadrants and lactose based mixtures in the lower two.  
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Figure 4: Top - First Derivative of acetaminophen; Bottom – From PCA overview – PC(x-expl): 1(26%) from FND-1 dataset. 
 
The samples in Figure 3 have been separated according to the acetaminophen concentration by applying first derivative 
and maximum normalisation to correct for baseline offsets and intensity differences respectively.  In order to determine 
numerically the accuracy of classifying samples according to the presence of acetaminophen, we adopted a simple 
threshold test based on Principal Component Regression (PCR). If the predicted concentration of acetaminophen in a 
sample is lower than the threshold then it is said not to contain acetaminophen.  If the predicted concentration is higher 
than the threshold then it is said not to contain acetaminophen.  The errors described in Table 4 give the frequency at 
which this binary determination was incorrect. 
 

Threshold Dataset  
2% 3% 5% 

RD-1 56.0% 55.1% 48.6% 
FD-1 57.1% 56.1% 49.3% 
ND-1 18.4% 16.6% 12.0% 

FND-1 7.4% 4.6% 5.1% 

Table 4:  Percentage % error of PCR classification. 

 
   This is a simple binary test for comparing the PCR results with the machine learning results in Table 5.  The PCR 
results reflect the gradual improvement of the dataset model due to the PCA.  Surprisingly the first derivative PCR 
results were all less accurate than the raw dataset.  When faced with these results it was decided to repeat calculations 
but on normalised data only i.e. without the first derivative applied.   This treatment produced better classification 
accuracy than both the raw dataset and first derivative only.  From this we can assume that a more efficient method for 
correcting for the inherent weighting between spectra in this Raman dataset.  Applying the first derivative algorithm in 
combination with a maximum normalisation transformation and setting a threshold value of three percent produced a 
classification accuracy of 4.6% which was the best model developed.   
 
As shown in Table 5, the machine learning analysis methods were found to surpass the traditional chemometrics methods 
in classification of samples. 
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Method RD-1 FD-1 FND-1 

RBF SVM 5.1% 
(C=1000, σ 

=0.01) 

0.9% 
(C=10, σ=0.01) 

0.9% 
(C=10, σ=0.01) 

Polynomial SVM 5.1% 
(C=100, d =1) 

4.1% 
(C=0.1, d=1) 

0.9% 
 (C=1, d=1) 

K-Nearest Neighbours 12.0% 
(k=1) 

5.1% 
(k=6) 

3.2% 
(k=1) 

C4.5 11.5% 1.8% 1.4% 
Ripper 14.7% 1.4% 1.4% 

Naïve Bayes 24.0% 25.3% 6.0% 

Table 5:  Percentage error of Machine Learning methods in the classification of acetaminophen presence in solid mixtures e.g. 
a result of 4.6% means that 10 samples were misclassified in total. 

 
Table 5 shows the results of five different machine learning classification methods (the results for both RBF and 
Polynomial kernel SVMs are shown) on three versions of the acetaminophen dataset, i.e. raw, first derivative, and first 
derivative normalised. For all these methods, the WEKA15 implementation was used. The default settings were used for 
C4.5, Ripper, and Naïve Bayes.  For SVMs, RBF, and Polynomial kernels with different parameter settings were tested. 
The parameter settings that achieved the best results are shown in parentheses. Similarly, for kNN, the table shows the 
value for k (number of neighbours) that resulted in the lowest percentage error. The kNN method was tested for values 
of k from 1 to 20. 
  
In Table 5, the lowest error of 0.9% was achieved by the SVM on the FD-1 (using a RBF kernel with C=10 and σ=0.01) 
and on the FND-1 dataset (using a linear kernel with C=1.0, a RBF kernel also managed this level of accuracy). 
However, a paired t-test shows that there is no significant difference the results achieved by the SVM on FND-1 and all 
the other classifiers whose error values are highlighted in bold in the table. The paired t-test is based on a 5% confidence 
level and, because a cross-validation test was run, uses a corrected variance estimate, as recommended by Nadeau & 
Bengio.20 The error of 0.9% equates to the misclassification of two samples out of the 217.  The RBF kernel (on FD-1) 
and the linear kernel (on FDND-1) misclassified two different samples, which implies that the misclassification is an 
inherent property of the different classifiers used, as opposed to being caused by an outlier in the dataset. 
 
A significant difference was observed between the best PCR model (using a threshold of 3% on the FND-1 dataset) and 
the linear kernel SVM on the FND-1 dataset (Note that only the RBF SVM and Polynomial SVM significantly improve 
on the best PCR result). Overall, the SVM appears to exhibit the best results, matching or outperforming all other 
methods on the raw and pre-processed data. As with the chemometric methods, three of the classifiers (kNN, C4.5 and 
Ripper) improve their accuracy when based on the pre-processed versions of the dataset. The Naïve Bayes classifier 
does not improve until a first derivative followed by a maximum normalisation has been applied to the data, whereas the 
SVM achieves a good performance on all versions of data. 
 
These results have shown that machine learning methods are capable of outperforming the traditional chemometric 
methods in the classification of the target acetaminophen based on spectral data. They have also shown that the 
classification accuracy of these machine learning methods can be improved by pre-processing techniques such as first 
derivative and maximum normalisation.



 

4. CONCLUSIONS 
 
The Raman spectra of a wide variety of solid mixtures containing the target analyte (acetaminophen) in various 
concentrations were collected.   The resulting spectra were analysed using traditional chemometrics to investigate the 
principal factors that influence the development of qualitative and quantitative analysis methods.  Initial investigations 
identified these as baselines due to fluorescence and/or residual laser scatter and Raman intensity effects.  Pre-
processing techniques such as first derivative and maximum normalisation reduced the impact of these unwanted effects 
and allowed sample separation according to acetaminophen concentration.  Performing PCR and SVM gave a numerical 
accuracy of this classification technique.  The SVM classifier based on data, which has had a first derivative followed 
by maximum normalisation applied to it, has been shown to outperform PCR in the identification of Acetaminophen. 
The superior performance of the SVM over all other methods used in this research is particularly evident when the raw 
data is used as the input. The majority of machine learning methods have also been shown to benefit from the pre-
processing techniques of first derivative and maximum normalisation.  
 
To further deal with problems such as misclassification of samples, future work could investigate the use of PCA in 
combination machine learning methods such as SVM.  This might contribute an illustrative identification element to 
machine learning, which would permit recognition of misclassified samples in the form of Raman spectra.  The 
development of an automated baseline removal programme would also greatly improve pre-processing techniques  
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