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Abstract

This paper presents the results of an investigation into the use of machiniedea
methods for the identification of narcotics from Raman spectra. Thdfadasisn

of spectral data and other high dimensional data, such as imagesgxyamession
data and spectral data, poses an interesting challenge to machine leasring
presence of high numbers of redundant or highly correlated attrilcateseri-
ously degrade classification accuracy. This paper investigates thé Reaapal
Component Analysis (PCA) to reduce high dimensional spectral datéoam-
prove the predictive performance of some well known machine legmithods.
Experiments are carried out on a high dimensional spectral datasese Hx-
periments employ the NIPALS (Non-Linear Iterative Partial Least 8gg)aPCA
method, a method that has been used in the field of chemometrics fdraspec
classification, and is a more efficient alternative than the widely usedvegem
decomposition approach. The experiments show that the use of this RE&&an
can improve the performance of machine learning in the classificatiomgbf h
dimensionsal data.

1 Introduction

The automatic identification of illicit materials using Ramspectroscopy is of signif-
icant importance for law enforcement agencies. High dinograd spectral data can
pose problems for machine learning as predictive modelsdbas such data run the
risk of overfitting. Furthermore, many of the attributes nieyredundant or highly
correlated, which can also lead to a degradation of predictcuracy.

This problem is equally relevant to many other applicatiomdins, such as the
classification of gene-expression microarray data [1]giendata [2] and text data [3].
In the classification task considered in this paper, Ramactsp are used for the
identification of acetaminophen, a pain-relieving drug tedound in many over-the-
counter medications, within different mixtures. Typigalnethods from a field of
study known as chemometrics have been applied to this pkrtiproblem [4], and
these methods use PCA to handle the high dimensional spP&#ais a classical sta-
tistical method for transforming attributes of a datasét im new set of uncorrelated
attributes called principal components (PCs). PCA can kd tus reduce the dimen-
sionality of a dataset, while still retaining as much of tlaeiability of the dataset as



possible. The goal of this research is to determine if PCAbmansed to improve the
performance of machine learning methods in the classificatf such high dimen-
sional data.

In the first set of experiments presented in this paper, thfompeance of five
well known machine learning techniques (Support Vector hiizes, k-Nearest Neigh-
bours, C4.5 Decision Tree, RIPPER and Naive Bayes) alonl elétssification by
Linear Regression are compared by testing them on a Rametramataset. A num-
ber of pre-processing techniques such as normalisatiofirahderivative are applied
to the data to determine if they can improve the classificaditcuracy of these meth-
ods. A second set of experiments is carried out in which PCé raachine learn-
ing (and the various pre-processing methods) are used ification. This set of
PCA experiments also facilitates a comparison of machiamiag with the popular
chemometric technique of Principal Component Regres$t@R(), which combines
PCA and Linear Regression.

The main contributions of this research are as follows:

1. It presents a promising approach for the classificati@ubftances within com-
plex mixtures based on Raman spectra, an application teatdtebeen widely
considered in the machine learning community. This apgraaald also be
applied to other high dimensional classification problems.

2. It proposes the use of NIPALS PCA for data reduction, a ogthat is much
more efficient than the widely used eigenvector decompusitiethod.

3. It demonstrates the usefulness of PCA for reducing difoaatity and improv-
ing the performance of a variety of machine learning methd&tsvious work
has tended to focus on a single machine learning methodsdtdd@monstrates
the effect of reducing data to different numbers of printgmmponents.

The paper is organised as follows. Section 2 will give a hdigdcription of Ra-
man spectroscopy and outline the characteristics of the idgroduces. Section 3
describes PCA, the NIPALS algorithm for PCA that is used lagetthe PCR method
that incorporates PCA into it. Section 4 provides a briefcdesion of each machine
learning technique used in this investigation. Experirakresults along with a dis-
cussion are presented in Section 5. Section 6 describésdetsearch and Section 7
presents the conclusion of this study.

2 Raman Spectroscopy

Raman spectroscopy is the measurement of the wavelengtintengity of light that
has been scattered inelastically by a sample, known as theRaffect [5]. This
Raman scattering provides information on the vibrationatiams of molecules in the
sample compound, which in turn provides a chemical fingetpiievery compound
has its own uniqgue Raman spectrum that can be used for satepigfication. Each
point of a spectrum represents the intensity recorded attacylar wavelength. A
Raman dataset therefore has one attribute for each poirts @omstituent spectra.



Raman spectra can be used for the identification of matesialh as narcotics [4],
hazardous waste [6] and explosives [7].

Raman spectra are a good example of high dimensional datapafRspectrum
is typically made up of 500-3000 data points, and many detasay only contain
20-200 samples. However, there are other characterigtiRaraan spectra that can be
problematic for machine learning:

e Collinearity: many of the attributes (spectral data points) are highlyetared
to each other which can lead to a degradation of the predieticuracy.

¢ Noise: particularly prevalent in spectra of complex mixtures.dfeve models
that are fitted to noise in a dataset will not perform well dmeottest datasets.

e Fluorescence: the presence of fluorescent materials in a sample can obtbeure
Raman signal and therefore make classification more ditfidjl

e Variance of Intensity: a wide variance in spectral intensity occurs between dif-
ferent sample measurements [8].

3 Principal Component Analysis

In the following description, the dataset is representethbymatrix X, whereX is a
N x p matrix. For spectral applications, each rowf the p-vectorz; contains the
intensities at each wavelength of the spectrum samdach columnX; contains all
the observations of one attribute. PCA is used to overcom@téviously mentioned
problems of high-dimensionality and collinearity by rehgcthe number of predictor
attributes. PCA transforms the set of inpus, X5, ..., X into another set of col-
umn vectorsly, Ts, . .., Ty where thel’s have the property that most of the original
data’s information content (or most of its variance) is stbn the first fewl”s (the
principal component scores). The idea is that this allovdsicgon of the data to a
smaller number of dimensions, with low information lossygly by discarding some
of the principal components (PCs). Each PC is a linear coatioin of the original in-
puts and each PC is orthogonal, which therefore eliminatepiioblem of collinearity.
This linear transformation of the matriX is specified by & x p matrix P so that the
transformed variableg are given by:

T = XP oralternativelyX is decomposed as followsl = 7PT Q)

where P is known as thdoadings matrix. The columns loadings matri®R can be
calculated as the eigenvectors of the matkiX X [9], a calculation which can be
computationally intensive when dealing with datasets @-3000 attributes. A much
quicker alternative is the NIPALS method. The NIPALS metlimes not calculate
all the PCs at once as is done in the eigenvector approacteathst calculates the
first PC by getting the first PC scorg, and the first vector of the loadings matrix,,
from the sample matriX'. Then the outer product; p!, is subtracted fronX and the
residual,F, is calculated. This residual becomEsn the calculation of the next PC
and the process is repeated until as many PCs as requiredeamegenerated. The
algorithm for calculating the!” PC is detailed below [10]:



Take a vectox; from X and call itt,,:t,, = z;
Calculatey!,: pl, = t, X/t t,
NormaliSQ?fn to Iength 1:p;1,new = p;wld/‘ |pfnold‘|

Calculate,: t, = Xp,/pl.pn

o~ W nhoE

Compare,, used in step 2 with that obtained in step 4. If they are the same
stop (the iteration has converged). If they still differ,tgcstep 2.

After the first PC has been calculated (izg.has converged)X in steps 2 and 4 is
replaced by its residual, for example, to generate the ske@h.X is replaced by,
whereE; = X — t1p].

See Ryder [4], O’Connelt al. [8] and Conroyet al. [6] for examples of the use
of PCA in the classification of materials from Raman spectra.

3.1 Principal Component Regression

The widely used chemometric technique of PCR is a two-stdfivatiate regression

method, in which PCA of the data is carried out in the first stepthe second step,
a multiple linear regression between the PC scores obtange PCA step and the
predictor variable is carried out. In this regression stlp, predictor variable is a
value that is chosen to represent the presence or absereetafget in a sample, e.g.
1 for present and -1 for absent. In this way, a classificatiodehcan be built using

any regression method.

4 Machine Learning

4.1 Support Vector Machine

The SVM [11] is a powerful machine learning tool that is cdpatf representing
non-linear relationships and producing models that gdiseravell to unseen data.
For binary classification, a linear SVM (the simplest formS3M) finds an optimal
linear separator between the two classes of data. This apseparator is the one
that results in the widest margin of separation betweenltedasses, as a wide
margin implies that the classifier is better able to classifgeen spectra. To regulate
overfitting, SVMs have a complexity parametéf, which determines the trade-off
between choosing a large-margin classifier and the amounthigh misclassified
samples are tolerated. A higher value(@fmeans that more importance is attached
to minimising the amount of misclassification than to findagvide margin model.
To handle non-linear data, kernels (e.g. Radial Basis kem¢RBF), Polynomial or
Sigmoid) are introduced to map the original data to a newufeaspace in which a
linear separator can be found. In addition to &@arameter, each kernel may have
a number of parameters associated with it. For the expetsmeported here, two
kernels were used: the RBF kernel, in which the kernel widtltan be changed, and
the Linear kernel, which has no extra parameter. In gentr@alSVM is considered
useful for handling high dimensional data.



4.2 k-Nearest Neighbours

k-Nearest Neighbours (k-NN) [12] is a learning algorithmiethclassifies a test sam-
ple by firstly obtaining the class of thiesamples that are the closest to the test sample.
The majority class of these nearest samples (or neares¢ Sample whert = 1) is
returned as the prediction for that test sample. Varioussomea may be used to de-
termine the distance between a pair of samples. In theseimqgrds, the Euclidean
distance measure was used. In practical terms, each Rareattusp is compared

to every other spectrum in the dataset. At each spectralpdtd, the difference in
intensity between the two spectra is measured (distan&&) stim of the squared dis-
tances for all the data points (full spectrum) gives a nuoa¢rmeasure of how close
the spectra are.
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The CA4.5 decision tree [13] algorithm generates a seriefstbén rules that are rep-
resented as a tree structure. Each node in the tree cordssfma test of the intensity
at a particular data point of the spectrum. The result of aiesne node determines
which node in the tree is checked next until finally, a leafentxdreached. Each leaf
specifies the class to be returned if that leaf is reached.

4.4 RIPPER

RIPPER [14] (Repeated Incremental Pruning to Produce Reatuction) is an in-
ductive rule-based learner that builds a set of prepositianles that identify classes
while minimising the amount of error. The humber of trainex@mples misclassified
by the rules defines the error. RIPPER was developed withdhkaj handling large
noisy datasets efficiently whilst also achieving good geligation performance.

5 Experimental Results

5.1 Dataset

In the following experiments, the task is to identify aceitaophen. The acetaminophen
dataset comprises the Raman spectra of 217 different sampleetaminophen is
present in 87 of the samples, the rest of the samples being oq@df various pure
inorganic materials. Each sample spectrum covers the 852000 cm! and is
made up of 1646 data points. For more details on this dasesetD’Connelét al. [8].

5.2 Comparison of Machine Learning Methods

Table 1 shows the results of six different machine learniaggification methods using
a 10-fold cross-validation test on the acetaminophen datdse first column shows
the average classification error achieved on the raw dgfaBgt The three remaining
columns show the results of using each machine learningoddthtandem with a

pre-processing technique:



Table 1: Percentage Classification Error of Different MaehiLearning Methods on
Acetaminophen Dataset

Pre-processing Technique

Method RD ND FD FND
Linear SVM 6.45 2.76 3.23 0.92*

(C=100) (C=1)  (C=10000) (C=0.1)
RBF SVM 5.07 2.76 1.84 0.92*

(C=1000, (C=1000, (C=10000, (C=10,
0=0.1) 0=0.001) 0=10) 0=0.01)

k-NN 11.06 7.83 4.61 4.15
(k=2) (k=2) (k=10) (k=1)
C4.5 10.14 7.83 1.84 1.38
RIPPER 15.67 11.06 3.69 2.3
Naive Bayes 25.35 13.82 25.81 5.53
Linear Reg. 27.65 16.13 25.35 20.28

e ND: dataset with each sample normalised. Each sample ideth@cross by
the maximum intensity that occurs within that sample.

e FD: a Savitzky-Golay first derivative [15], seven-point eaging algorithm is
applied to the raw dataset.

e FND: a normalisation step is carried out after applying d fiesivative to each
sample of the raw dataset.

Table 1 shows the lowest average error average achieveddhyctessifier and
pre-processing combination. For all these methods, agmart K-NN, the WEKA [12]
implementation was used. The default settings were usétfdy, RIPPER and Naive
Bayes. For SVMs, RBF and Linear kernels with different pasten settings were
tested. The parameter settings that achieved the bestsraseilshown in parentheses.
The Linear SVM was tested for the following values@f 0.1,1,...,10000. The
same range of’ values were used for RBF SVM, and these were tested in combi-
nation with thes values of: 0.0001, 0.001,...,10. For k-NN, the table shows the
value fork (number of neighbours) that resulted in the lowest percgn&aror. The
k-NN method was tested for all values bffrom 1 to 20. The results of each ma-
chine learning and pre-processing technique combinatidralole 1 were compared
using a paired t-test based on a 5% confidence level and usingected variance
estimate [16]. The lowest average error over all resultsainld 1 of 0.92% (i.e. only
two misclassifications, achieved by both Linear and RBF Saighlighted in bold
and indicated by an asterisk. Those results which do nardiffnificantly (according
to the t-test) are also highlighted in bold.



On both the raw (RD) and normalised (ND) dataset, both SVM etoogderform
better than any of the other machine learning methods, as th@o significant dif-
ference between the best overall result and the SVM resol&®and ND, whereas a
significant difference does exist between the best ovezalllt and all other machine
learning methods on RD and ND. This confirms the notion thaMS\are particu-
larly suited to dealing with high dimensional data and ibadsggests that SVMs are
capable of handling a high degree of collinearity in the datimear Regression, on
the other hand, performs poorly with all pre-processingntégues. This poor per-
formance can be attributed to its requirement that all tHersos of the data matrix
arelinearly independent [9], a condition that is violated in highly correlated spatt
data. Similarly, Naive Bayes has recorded a high average errthe RD, ND and
FD data. This is presumably because of its assumption operttience of each of
the attributes. It is clear from this table that the pre-pssing techniques of FD and
FND improve the performance of the majority of the classifigtor SVMs, the error
is numerically smaller, but not a significant improvemergrahie RD and ND results.
Note that Linear Regression is the only method that did nioieze a result to compete
with the best overall result.

Overall, the SVM appears to exhibit the best results, matclr outperforming
all other methods on the raw and pre-processed data. Wehte# pre-processing,
however, the performance of other machine learning metbad$e improved so that
they are close to that of the SVM.

5.3 Comparison of Machine Learning methods with PCA

As outlined in Section 3, PCA is used to alleviate problen@hsas high dimension-
ality and collinearity that are associated with spectréad&or the next set of exper-
iments, the goal was to determine whether machine learnigifpads could benefit
from an initial transformation of the dataset into a smadlet of PCs, as is used in
PCR. The same series of cross-validation tests were ruepeit this case, during
each fold the PC scores of the training data were fed as inpti® machine learning
method. The procedure for the 10-fold cross-validatiorsifolows:

1. Carry out PCA on the training data to generate a loadingsxma

2. Transform training data into a set of PC scores using teeficomponents of
the loadings matrix.

3. Build a classification model based on the training PC scdega.

4. Transform the held out test fold data to PC scores usindodmings matrix
generated from the training data.

5. Test classification model on the transformed test fold.
6. Repeat steps 1-5 for each iteration of the 10-fold cradisiation.

With each machine learning and pre-processing method cwatibn, the above
10-fold cross-validation test was carried out #B8=1 to 20 principal components.



Table 2: Percentage Classification Error of Different Maehiearning Methods with
PCA on Acetaminophen Dataset

Pre-processing Technique

Method RD ND FD FND
Linear SVM 5.07 1.84 3.23 0.46
(P=18, (P=13, (P=14, (P=4,
C=0.1) C=0.1) C=0.01) C=0.1)
RBF SVM 6.91 2.76 2.23 0.46
(P=19, (P=16, (P=12, (P=5
C=100, C=10, C=10, C=10,
¢=0.001) ¢=0.001) 0=0.001) +=0.001)
k-NN 11.06 5.99 2.3 0.0*
(P=17,k=3) (P=10k=1) (P=14k=1) (P=4k=5)
C4.5 7.83 7.37 7.37 1.38
(P=20) (P=19) (P=5) (P=6)
RIPPER 11.98 8.29 6.45 2.3
(P=20) (P=8) (P=5) (P=3)
Naive Bayes 38.71 10.6 11.52 3.23
(P=1) (P=8) (P=5) (P=2)
PCR 9.22 5.53 8.29 1.38
(PCA+Linear Reg.)  (P=16) (P=20) (P=11) (P=80)

Therefore, 20 different 10-fold cross-validation testgeveun for Naive Bayes, for
example. For those classifiers that require additionalrpaters to be set, more tests
had to be run to test the different combinations of parameteg. C, o, and P for
RBF SVM. The same ranges f6f, o andk were tested as those used for the experi-
ments of Table 1.

Table 2 shows the lowest average error achieved by each natidsi of machine
learning and pre-processing method with PCA. The numbelGs ised to achieve
this lowest average error is shown in parentheses, alofgthétadditional parameter
settings for the SVM and k-NN classifiers. As with Table 1, tlest result over all the
results of Table 2 is highlighted in bold and denoted by aaréslt, with those results
that bear no significant difference from the best overallltedso highlighted in bold.
Again, the pre-processing method of FND improves the perémce of the majority
of the classifiers, Naive Bayes being the exception in thée ctn comparing the best
result of Table 1 with the best result of Table 2 for each maeléarning method (all
in the FND column), it can be seen that the addition of the P@f sesults in either
the same error (C4.5 and RIPPER) or a numerically smaller érinear SVM, RBF
SVM, k-NN and Linear Regression). The improvement effedtgdhe inclusion of



this PCA step is particularly evident with the Linear Regies technique. Note that
this combination of PCA and Linear Regression is equivaieMCR.

Despite the fact that for the SVM and k-NN classifiers, thered significant
difference between the best results with or without PCAs indteworthy that the
SVM and k-NN classifiers with PCA were capable of achievinghsiow errors with
far fewer attributes, only four PCs for the Linear SVM and k-dnd 5 PCs for the
RBF SVM. This makes the resulting classification model mudrarefficient when
classifying new data. In contrast, PCR required a much greatmber of PCs (80) to
achieve its lowest error. (This result was discovered inetigeriment detailed in the
next section.)

To make an overall assessment of the effect of using PCA irbamation with
machine learning, a statistical comparison (paired tugétst 5% confidence level) of
the 28 results of Table 1 and Table 2 was carried out. Thicatds that, overall, a
significant improvement in the performance of machine liegrmethods is gained
with this initial PCA step. It can therefore be concluded tha incorporation of PCA
into machine learning is useful for the classification ofrhiimensional data.

5.4 Effect of PCA on Classification Accuracy

To further determine the effect of PCA on the performance a€¢hine learning meth-
ods, each machine learning method (using the best parasedtieg and pre-processing
technique) was tested using larger numbers of PCs. Eacloohetds tested for values
of P in the range 1-640.
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Figure 1: Effect of changing the number of PCs on Machine hiegr Classification
Error

Figures 1 and 2 shows the change in error for each of the methexdus the
number of PCs retained to build the model. It can be seen fnesetgraphs that as PCs
are added, error is initially reduced for all methods. Mostmeds require no more
than six PCs to achieve the lowest error. After this lowesirgroint, the behaviour of



the methods differ somewhat. Most of the classifiers suffastit increases in error
within the range of PCs tested: Naive Bayes, PCR, RBF SVMPER and k-NN
(although not to the same extent as the previous examplegpnitrast, the error for
C4.5 never deviates too much from its lowest error at six FBs may be due to its
ability to prune irrelevant attributes from the decisioeetimodel. The Linear SVM
initially seems to follow the pattern of the majority of céiféers, but then returns to
a more acceptable error with the higher number of PCs. Qyérad evident that
all of the classifiers, apart from PCR, will achieve theirttaesuracy with a relatively
small number of PCs; itis probably unnecesary to generatenane than twenty PCs.
However, the number of PCs required will depend on the upitheyldataset. Further
experiments on more spectral data, or other examples ofdiighnsional data, are
required to determine suitable ranges of PCs for these maddérning methods.
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Figure 2: Effect of changing the number of PCs on Machine hiegr Classification
Error

5.5 Experiments on Chlorinated Dataset

To extend the results of the Acetaminophen experimentstladiuset of experiments
was carried out on another dataset of Raman spectra: Chledidataset. This dataset
contains the spectra for 230 sample mixtures, each madediffe@ent combinations
of solvents (25 different solvents were used). Three sépalassification experiments
were based on this dataset. In each case the task is to idargffecific chlorinated
solvent. As can be seen from the results of Table 3, theseiegrs focussed on
only two pre-processing techniques: the normalisation)(iDused as the baseline
method for comparison and the first derivative with nornadia (FND) is used as it
produced the best results on the Acetaminophen datasettafiie directly compares
the performance of each machine learning and pre-progessimbination without
PCA against the same combination with PCA. Again, for manthefmachine learn-
ing methods, the use of PCA appears to improve performanoeiettr, two major



Table 3: Comparison of Machine Learning with and without P@#A Chlorinated
Dataset: Percentage Classification Error (N=No PCA, Y=P&&d)

Dichloromethane Trichloroethane Chloroform
ND FND ND FND ND FND
Method N Y N Y N Y N Y N Y N Y

LSVM 1.74 0.43 1.74 217 565 2.61 6.09 2.61 391 1.74 522 4.78
RBF 0.43 0.43 0.87 1.74 522 2.61 6.09 2.61 435 3.91 522 4.35
k-NN  8.26 9.13 10.439.57 16.09 13.35 13.48 11.74 23.91 19.1DZDMO
C45 3.04 826 0.43 8.26 7.39 16.093.91 16.52 3.91 14.78 3.04616.9
RIP. 6.52 14.78 0.43 12.1711.3018.706.09 13.04 3.04 18.70 3.649491
NB 43.04 41.30 37.83 26.09 53.48 49.13 40.87 34.35 56.09 5D.00485.22
Reg. 10.87 10.00 13.04 18.70 18.70 16.96 26.52 16.52 13.91 1AP228.70

exceptions stand out: C4.5 and RIPPER, both of which aredafra rule-leaning
algorithm. Both of these methods suffer a notable loss ofirmay when PCA is
employed. This is in contrast with the results on Acetamir@p in which C4.5 and
RIPPER gained a small improvement with PCA on the ND datasetachieved iden-
tical accuracy (to when no PCA was used) on the FND datasetrparison of the
non-PCA results with those obtained with PCA shows no sicgaifi difference. How-
ever, if the results of these rule-based algorithms aretedjit significant difference
is observed that confirms the results achieved on the Acetgphen dataset.

To determine the cause of the drop in performance of C4.5palysis was carried
out on the decision trees produced by C4.5 when trained ondhmalised Chloro-
form dataset. When the original dataset is used, C4.5 geseaatree of size 11.
When the first 27 PCs (this number resulted in the best perfure)ascores are used
as input, C4.5 generates a much more complex tree of sizeusthefmore, the main
branch of this tree is based on PC24 and many samples aréiethasa leaf based on
PC26. A key point is that PCs are ordered according to theitritution to the total
variance; PCs 24 and 26 account for very little (less thaPo @f the total variance
in the scores data. Any model that assigns a strong weigtdittiese attributes is in
danger of overfitting to the training data and could themefaxhibit poor generalisa-
tion ability. A similar comparison of the non-PCA and PCAdsgroduced from the
Acetaminophen dataset shows that a size difference eligits not as great: the tree
based on original data has size 7 and the tree based on PG skedeehas size 13.
Of more importance is the fact that, for the Acetaminopheasi, the tree based on
PC scores selected PC3 and PC2 as key attributes; thebataraccount for a much
greater percentage of the total variance (about 38%).

This analysis shows that the performance of C4.5 may be selyeaffected by
the use of PC transformed data when compared with its pegioceson the original
data. This occurs when key nodes of the tree are based on P& sfdow variance.
Apart from abandoning PCA for decision trees altogethee alternative is to use



the original data and PC scores combined, thus allowing @4£elect both from
the original set of attributes and from the linear combmatattributes. Popelinsky
and Brazdil [17] found this approach of adding PC attribuggker than replacing the
original attributes to give better results. (They do nobr¢the differences, however.)
They found what they described as modest gains in the uselifathl PC scores to
the dataset when the C5.0 decision tree (a later commegcsibn of C4.5) was used.
We tested this approach on the normalised versions of thrapdatasets with C4.5.
In three of the classification tasks, the error achieved westical to that achieved
without PCA; a minor improvement was found for the Trichletttane dataset. One
drawback with this approach is that it increases the dinoedity of the data instead
of reducing it, which is one of the main motivations for emyim PCA.

6 Related Research

The work presented here extends previous research cawmteldyahe authors into
the use of machine learning methods with various pre-pedggechniques for the
classification of spectral data [8]. That work is extendethia paper by using these
machine learning methods in combination with the NIPALS Pt€géhnique, and in-
vestigating the effect of different numbers of principahqmonents on classification
accuracy. The most closely related research to this workedaund in Sigurdssogt
al. [18], where they report on the use of neural networks for #tection of skin can-
cer based on Raman data that has been reduced using PCA.chieyeaP CA using
singular value decomposition (SVD), a method which cakeglall the eigenvectors
of the data matrix, unlike the NIPALS method that was use& hén addition, they
do not present any comparison with neural networks on thedegawithout the PCA
step.

As far as the authors are aware, few studies have been cauiehat investigate
the effect of using PCA with a number of machine learning atgms. Popelin-
sky [19] does analyse the effect of PCA (again, eigenvectaomhposition is used)
on three different machine learning algorithms (Naive Bay@5.0 and an instance-
based learner). In this paper, the principal componenescare added to the original
attribute data and he has found this to result in a decreasednrate for all methods
on a significant number of the datasets. However, the expetsmnwere not based
on particularly high dimensional datasets. It is also wortting that there does not
appear to be much evidence of the use of NIPALS PCA in conjometith machine
learning for the classification of high dimensional data.

7 Conclusions

This paper has proposed the use of an efficient PCA methodAUHPto improve
the performance of some well known machine learning metlrotise classification
of high dimensional spectral data. Experiments in the dlaaon of Raman spec-
tra have shown that, overall, this PCA method improves thifopeance of machine
learning when dealing with such high dimensional data.H&armore, through the use
of PCA, these low errors were achieved despite a major remtuof the data; from



the original 1646 attributes of Acetaminophen to at leastagiributes. Additional

experiments have shown that it is not necessary to genexate timan twenty PCs to
find an optimal set for the spectral dataset used, as therpafwe of the majority of
classifiers degrades with increasing numbers of PCs. Tbhigriakes NIPALS PCA

particularly suited to the proposed approach, as it doesegpire the generation of all
PCs of a data matrix, unlike the widely used eigenvector apasition methods. This
paper has also shown that the pre-processing techniquetadidirivative followed by

normalisation improves the performance of the majoritylafse machine learning
methods in the identification of Acetaminophen. Furtheregixpents on the Chlo-
rinated dataset confirmed the benefits of using PCA, but dtffdighted that poor

results can be achieved when PCA is used in combination withbased learners,
such as C4.5 and RIPPER.

Overall, the use of NIPALS PCA in combination with machinarldng appears
to be a promising approach for the classification of high disienal spectral data.
This approach has potential in other domains involving ldighensional data, such as
gene-expression data and image data. Future work willvevtgsting this approach
on more spectral datasets and also on other high dimenglatesdets. Further inves-
tigations could also be carried out into the automatic sigle®f parameters for the
techniques considered, such as the number of PCs, kerraehptars for SVM and
for K-NN.
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