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Abstract 

 
The aim of this study is to evaluate the effectiveness of genetic 
programming relative to that of more commonly-used methods for 
the identification of components within mixtures of materials 
using Raman spectroscopy. A key contribution of the genetic 
programming technique proposed in this research is that it 
explicitly aims to optimise the certainty levels associated with 
discovered rules, so as to minimize the chance of misclassification 
of future samples. 

1 Introduction 

Raman spectroscopy may be described as the measurement of the intensity and 
wavelength of inelastically scattered light from molecules when they are excited by 
a monochromatic light source. The Raman scattered light occurs at wavelengths that 
are shifted from the incident light by the energies of molecular vibrations. The 
analytical applications of Raman spectroscopy continue to grow; typical applications 
are in structure determination [1], multi-component qualitative analysis and 
quantitative analysis [2].  

Traditionally, multivariate data analysis techniques such as Partial Least Squares 
(PLS) and Principal Component Regression (PCR) have been used to identify the 
presence of specific compounds in mixtures from their Raman spectra [2].  
However, Raman spectral elucidation suffers from several problems. The presence 
of fluorescent compounds, impurities, complex mixtures and other environmental 
and instrumental factors can greatly add to the difficulty in identifying compounds 
from their spectra [3]. Increasingly, machine learning techniques are being 
investigated as a possible solution to these problems, as they have been shown to be 
successful in conjunction with other spectroscopic techniques, such as the use of 
neural networks to identify bacteria from their infra-red spectra [4] and the 
application of neural networks to quantification of Fourier transform infra-red 
(FTIR) spectroscopy data [5]. Schultz et al. [6] used a neural network and PLS to 
identify individual components in biological mixtures from their Raman spectra, and 



Benjathapanum et al. [7] used PCR and neural networks to classify ultraviolet-
visible spectroscopic data. 

In this paper, neural networks, PLS and PCR are compared with the evolutionary 
technique of genetic programming for predicting which of four solvents are present 
in a range of mixtures. Genetic programming offers an advantage over neural 
networks and chemometric methods in this area as the rules generated are 
interpretable and may be used in isolation or in conjunction with expert opinion to 
classify spectra. 

 In combination with the environmental and instrumental problems outlined 
above, a significant challenge that also arises in other machine learning problems, is 
in the high sample dimensionality and low sample number commonly found in this 
area. In many real laboratory applications, it is required to identify materials based 
on a small number of reference spectra. While commercial spectral databases 
typically contain spectra for some thousands of materials, they are organised into 
categories and for individual groups of materials such as the solvents considered 
here, spectra would be provided for only a small number of mixtures, if any.  
Machine learning models exhibiting poor generalisation and overfitting to the 
training data are a consequence of this problem. 

In response to this, rather than aiming simply to evolve equations that classify 
the training data correctly, our approach aims to optimise selection of equations so 
as to minimize the chance of misclassification of future predicted samples and 
thereby minimize the problems associated with low sample numbers. 

Not many research groups have published applications of genetic programming 
for the interpretation of spectra. Goodacre [8] discusses the application genetic 
programming to FTIR spectroscopy image analysis. Using the same genetic 
programming software, Ellis et al. [9] has quantified the spoilage of meat from its 
FTIR spectra and Taylor et al. [10] has classified Eubacterium species based on 
their pyrolysis mass spectra.  

2 Description of Task 

Raman spectra were recorded on a Labram Infinity (J-Y Horiba) equipped with a 
liquid nitrogen cooled CCD detector and a 488nm excitation source.  All spectra 
were recorded at a set interval of ~400-3340 cm-1 with a resolution of ~11cm-1. The 
liquid samples were held in 1 cm pathlength quartz cuvettes and mounted in a macro 
sample holder (J-Y Horiba). The macro lens has a focal length of 40mm, which 
focuses through the cuvette to the centre of the solution. The spectral data was not 
corrected for instrument response. Three spectra were taken for each sample, the raw 
data for each sample were then averaged and analysed using the Unscrambler 
chemometrics software package. The solvents (all spectroscopic grade), acetone, 
acetonitrile, cyclohexane, and toluene were obtained from Sigma-Aldrich and used 
as received.  Solutions of different concentrations (Table 1) were made up by mixing 
known volumes of each solvent.  

The objective is to be able to predict accurately whether or not a specific solvent 
is present in a mixture of other solvents. The 24 samples contain differing 



combinations of four solvents, Acetone (A), Cyclohexanol (C), Acetonitrile (Acn) 
and Toluene (T), with compositions as listed in Table 1. Identification of each 
solvent is treated as a separate classification task. For each solvent, the dataset was 
divided into a training/testing set of 14 samples and a validation set of 10. The 
validation set in each case contained 5 positive and 5 negative samples.  

There are two challenging aspect to the dataset. Firstly, as mentioned earlier, the 
dimensionality of the data is very high, with 1024 points per sample and the number 
of samples is low. Secondly, for all four solvents, the most significant peaks occur in 
the same region of the spectra. This may be seen in Figures 2 to 4 (Section 4.1), 
which plot the Raman spectra of each pure solvent. The solvent mixtures detailed in 
Table 1 are a preliminary dataset produced for this study; the authors are currently 
collecting a more extensive and diverse dataset for future research. 
 

Table 1 Chemical composition of samples used in this study 

No. A % C % Acn% T %  No. A % C % Acn% T % 
1 0 100 0 0  13 0 75 0 25 
2 0 0 0 100  14 25 75 0 0 
3 100 0 0 0  15 25 0 0 75 
4 0 0 100 0  16 0 25 0 75 
5 50 50 0 0  17 0 0 25 75 
6 50 0 0 50  18 25 0 75 0 
7 50 0 50 0  19 0 0 75 25 
8 0 50 0 50  20 33 0 33 33 
9 0 0 50 50  21 33 33 33 0 
10 75 25 0 0  22 33 33 0 33 
11 75 0 0 25  23 0 33 33 33 
12 75 0 25 0  24 25 25 25 25 

3 Analysis Techniques 

3.1 Overview 

This section outlines the use of standard chemometric techniques and neural 
networks to identify components in mixtures from their Raman spectra. It then goes 
on to describe an alternative technique based on genetic programming.  

As mentioned in the Introduction, chemometric techniques are widely used for 
analysing spectra. While there are many such techniques, the two chosen in this 
study are PCR and PLS, as they are particularly well established for the 
classification of spectroscopic data [11,12,13]. Neural networks have been used 
successfully in conjunction with spectroscopic data in past research for classification 
purposes [4, 6].  Conventional feed-forward neural networks, however, can be hard 
to configure for a given problem and the means by which they form predictions are 
not particularly easy to interpret. Hence, they are often viewed as a ‘black box’ 
technique. 

Genetic programming is a well-known and well documented technique in 
machine learning [14]. In the approach taken in this paper, we attempt to evolve a 



mathematical formula through which data may be classified. A particular benefit of 
this technique is that it develops classification rules that are quite easily 
interpretable, in so far as it can be seen which wavelengths in the spectrum are used 
as the basis for decisions and how they are combined.  

3.2 Chemometric Methods 

PLS and PCR were carried out on the data using the Unscrambler software (CAMO 
A/S). PLS and PCR are extensions of the multiple linear regression approach and 
they are both well suited for estimating linear regression models when the predictor 
variables are highly collinear [15]. Both PCR and PLS extract successive linear 
combinations of the predictors, called factors, so that there is no correlation between 
the factor score variables used in the predictive regression model. The techniques 
differ, however, in the methods used in extracting factor scores. PCR produces 
factors reflecting the covariance structure between the predictor variables, while 
PLS regression produces factors reflecting the covariance structure between the 
predictor and response variables [12]. 

One of the main advantages of PLS over PCR is that the factors created by PLS 
are directly related to the constituents of interest and may be informative. In PCR, 
the factors are created solely by the spectral data and represent the most common 
variation in the data, ignoring their relation to the constituents of interest until the 
final regression step [16]. In the chemometric analyses, positive values above or 
equal to 0.5 classified a solvent as present. 

3.3 Neural Networks 

For this analysis, conventional feed-forward neural network structures [17] are used, 
and are trained using the backpropagation with momentum algorithm. Such 
networks consist of layers of neurons, with outputs from neurons in one layer 
connected to inputs in the next. Each neuron sums a set of weighted inputs and then 
applies a non-linear activation function (tanh, in this work) to this sum to derive an 
output. A separate neural network was trained for identification of each solvent. The 
inputs corresponded to Raman spectra of mixtures and the single output 
corresponded to a prediction whether or not the solvent was present in the mixture. 
The neural network configurations for each solvent are detailed in Table 2. These 
settings were found through experimentation. 

Table 2 Neural network configurations 

Neural Network Setting Cyclohexane Acetonitrile Acetone Toluene 
Number of Hidden Nodes 15 23 20 23 
Input–Hidden Learning Rate 0.02 0.03 0.06 0.03 
Hidden–Output Learning Rate 0.001 0.008 0.001 0.008 
Momentum 0.002 0.001 0.001 0.001 
Epochs 1000 1000 1000 1000 



3.4 Genetic Programming 

Genetic programming is a learning technique based on evolution. It views learning 
as a competition between individuals in an initially random population of potential 
solutions to a problem [14]. The approach attempts to find an optimal solution by 
breeding individuals in the population, chosen based on their fitness in partially or 
completely solving the problem, over a number of generations.  

In this research, each individual in the population represents a mathematical 
formula, composed of functions and variables. The functions used are the simple 
mathematical operators + and –. (Others could have been used, but sufficiently good 
performance was achieved with just these.) The variables correspond to wavelengths 
in each spectrum. The population was initialised using random combinations of 
functions and variables to create trees with a maximum depth of 5 nodes. Together, 
the functions and wavelengths selected by an individual i form an equation Ei, 
which, when evaluated for a specific spectrum Sj, produces a value Ei(Sj). We 
interpret this value as indicating the presence (Ei(Sj) ≥ 0) or absence (Ei(Sj) < 0) of 
the corresponding solvent. Fitness is calculated based on performance in classifying 
the training data, and also on minimising future misclassifications, as discussed 
below in Section 3.5.  

 

 
 

Figure 1 Schematic representation of genetic programming operations 



For this analysis, we use a population of 2000 individuals. Once the fitness of 
each equation in the population is ascertained, the fittest ones are chosen to breed in 
order to create a new population. Our breeding strategy consists of elitism, crossover 
and mutation as illustrated schematically in Figure 1. Elitism involves selecting the 
top two fittest individuals from each population, and copying them without mutation 
into the next generation. Crossover is used to generate the rest of the next 
generation’s population. This involves randomly selecting two individuals 
(according to a uniform distribution) from the top 1.5% of the preceding population 
and producing a new individual that combines features from both. The tree depth 
was set at a maximum of 5 nodes, and trees were prevented from becoming too large 
by addition of only the smaller of the two progeny to the population after crossover. 
Mutation involves random changes to an individual in the newly-generated 
population and is pre-configured to a fixed probability. The mutation rate in this 
experiment was set at 10%, i.e. one mutation in every 10 individuals. The algorithm 
was run until convergence, which took 50 generations. 

3.5 Optimisation of Certainty of Equations  

The primary goal of the individuals being evolved is, of course, to be able to classify 
all training data correctly. However, a secondary goal is to minimise the risk of 
future misclassifications. To achieve the primary goal, fitness is required to be 
defined in terms of classification performance on the training data. To achieve the 
secondary goal requires a mechanism whereby, if two individuals are equally good 
at classifying the data, the one with the greatest certainty is preferred. To this end, a 
two-level fitness function is proposed. To encourage achievement of the first goal, 
the first-level fitness of an individual i is calculated very simply as:  

F1(i)  =  Acc(i) × N (1) 

where Acc(i) is the classification accuracy of the individual and N is the number of 
training cases. Thus, a score of 1 is given for each correctly-classified individual, 
and a score of 0 is given for each incorrectly-classified one. To search for 
individuals with high levels of certainty, a measure of certainty is first required. We 
define the certainty factor, Ci(Sj) of an individual i relative to a spectrum Sj as: 

 Ci(Sj)  =  0 if Sj is misclassified by i, 
 Ci(Sj)  =  |Ei(Sj)| if Sj is classified correctly by i (2) 

To encourage achievement of the second goal, the second-level fitness of an 
individual i is calculated as: 

F2(i)  =  minj Ci(Sj) (3) 

In other words, it is equal to the lowest certainty factor for all spectra in the 
training set. Thus, if an individual does not classify all spectra correctly, its F2 value 
will be 0. The overall fitness of an individual is the sum of these: 

F(i)  =  F1(i) + F2(i) (4) 



The result of this is that F2 does not affect fitness unless an equation correctly 
identifies all training set samples. Accordingly, F2 does not affect the fitness 
rankings of equations that do not classify all spectra correctly, but acts as a tie-
breaker for those that do, as their fitness is increased by the minimum certainty 
factor relative to all spectra. This encourages the evolution of equations with 
increasing levels of certainty, thereby reducing risk of misclassification on future 
spectra. Since the F2 term arises from evaluating the equations, its order of 
magnitude may be completely different from that of the F1 term. However, since 
individuals are selected for crossover according to a uniform distribution from the 
top 1.5% of the population (see Section 3.4), the fitness function is required simply 
to give a ranking of individuals rather than an estimate of their relative performance. 

4 Experimental Results 

4.1 Comparison of Techniques 

The PLS, PCR, neural network and genetic programming techniques that were 
discussed in Section 3 have been applied to the task of predicting the 
presence/absence of each solvent (described in Section 2). For comparison purposes, 
the authors have also included results using three other popular general machine 
learning techniques, Naïve Bayes, Ripper and C4.5, as implemented in WEKA [18], 
using the default settings.  For all algorithms, the same sub-divisions of the data 
were used for training, parameter tuning and final validation testing.  

Table 3 provides details of the numbers of incorrect predictions made by each 
technique on the 10 validation samples for each solvent. As it indicates, PLS 
performed slightly better than PCR, with no incorrect classifications for 
cyclohexane. The neural network performed relatively badly on the cyclohexane test 
set but performed well on the others. In spite of large amounts of time spent 
exploring different configurations and parameter settings for the neural network to 
classify this solvent, the best result achieved was 3 incorrect. Naïve Bayes 
performed somewhat better than Ripper and C4.5 with an overall error rate of 
17.5%; however, it did not perform as well as the other techniques. In contrast with 
this, our genetic programming technique classified all validation samples correctly 
with little configuration.  

Table 3 Results of Analysis Techniques 

Prediction (Number incorrect out of 10) Technique 
Cyclohexane Acetonitrile Acetone Toluene Overall Error 

Rate (%) 
PCR 2 0 1 0 7.5 
PLS 1 0 1 0 5.0 

Neural Network 3 0 0 0 7.5 
Naïve Bayes 0 2 1 4 17.5 

Ripper 1 3 4 2 25 
C4.5 0 2 4 4 25 

Genetic Programming 0 0 0 0 0 



Figures 2 to 5 show the equations chosen by the genetic programming algorithm 
for identification of each of the four solvents, the chemical structure of the solvents 
and also illustrate the position of the wavelengths chosen in each of the equations. 
The genetic programming equations for toluene and cyclohexane tend to focus 
principally on the most intense peaks of the spectra. This corresponds to the C-H 
region of the spectrum. Acetone has 6 C-H bonds in its structure and therefore its 
main peak (at 2925 cm-1) coincides with significant peaks of toluene and 
acetonitrile. Presumably this is why the genetic programming equations do not 
identify this peak as useful for discriminating between the solvents, and instead 
focus on points around 1700 cm-1. In fact, the peak around 1700cm-1 in acetone 
corresponds to the presence of a C=O functional group, which the other solvents do 
not have. Similarly, acetonitrile was classified using two points around a peak at 
2255 cm-1. This corresponds to the presence of a C ≡N bond in acetonitrile, which is 
not present in any of the other solvents. This correlation between points chosen and 
chemical structure demonstrates the practicality of this method for use by chemists.  
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Figure 2 Raman spectrum of 100% cyclohexane sample showing data points used 
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Figure 3 Raman spectrum of 100% acetonitrile sample showing data points used 
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Figure 4 Raman spectrum of 100% acetone sample showing data points used 
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Figure 5 Raman spectrum of 100% toluene sample showing the data points used 

 
4.2 Effect of Optimising Certainty of Equations 

As was outlined in Section 3.5, a key aspect of our approach is that it seeks to 
promote the evolution of equations so as to maximise their certainty, with the 
intention that this should in turn minimise errors in subsequent prediction. Naturally, 
this assumes that increased certainty in the training set will correlate with increased 
certainty in the validation set. Such a correlation should be present if the two 
datasets are independently and identically distributed (IID). To verify this 
assumption empirically, Figure 6 presents plots for each solvent separately, 
comparing F2 values (minimum certainty factor for all spectra) as calculated on 
training data with corresponding values calculated on testing data. Each point in a 
graph corresponds to a single equation evolved for a solvent, all unique equations 



generated for each solvent are shown. The figure shows that there is reasonably 
good correlation between the F2 values for the training and testing data. 
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Figure 6 Comparisons of minimum certainty factors on training data relative to those of 
validation testing data 

It is worthwhile to note that, in Figure 6, the equations plotted all have F2 values 
for the training data that are greater than 0; in other words, they all classify all 
training samples correctly. On the other hand, several have F2 values for the testing 
data that are equal to 0, indicating that they do not classify all test samples correctly. 
This highlights the need to select equations that not only classify the training data 
correctly, but that do so with as high certainty as possible. The graphs indicate that 
the strategy of maximising certainty on the training data generally results in 
improving performance on unseen data, though there are some exceptions. 

It should be noted that the axes have different scales for the different solvents. 
The equations predicting acetone have significantly lower certainty levels than those 
of the other solvents, with the best acetone figure having a certainty level of just 
208, compared to values of over 2000 for the other solvents. Accordingly, we expect 



the acetone predictions to be the most vulnerable to misclassification of future test 
samples.  

5 Conclusions & Future Work 

This paper has described the value of genetic programming for Raman spectral 
classification and has introduced an improved fitness function to reduce the risk of 
misclassification of future samples. Genetic programming identified all solvent 
samples correctly with little configuration and the equations generated provide an 
insight into how decisions are made which offers an advantage over other techniques 
such as PLS, PCR and neural networks. This is very important in ‘real world’ 
practical applications of machine learning techniques, as troubleshooting 
misclassifications by ‘black box’ techniques is difficult. The evolved rules allow for 
decisions to be made which take both human and machine opinion into account and 
are informative when viewed in conjunction with the chemical structure of the 
compound whose presence is being investigated.  

The genetic programming technique developed in this research optimises the 
assurance levels associated with discovered rules, so as to reduce the likelihood of 
misclassification of future samples. This is useful in areas where the number of 
training samples is low. Future investigations in this area include the use of genetic 
programming in the prediction of chemical concentration from Raman spectra. We 
also propose in the future, to refine our fitness equations so that they can incorporate 
different misclassification costs for false positives and false negatives, as in some 
forensic applications one type of error is more serious than the other. 
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