
Combining Genetic Algorithms, Neural Networks and 
Wavelet Transforms for Analysis of Raman Spectra 

Kenneth Hennessy, Michael G. Madden and Alan G. Ryder 

hennessy@vega.it.nuigalway.ie, michael.madden@nuigalway.ie 
alan.ryder@nuigalway.ie 

National University of Ireland, Galway, Ireland 

Abstract. The purpose of this research is to develop Machine Learning 
techniques for quantitative analysis of illicit narcotics from mixtures based on 
their Raman spectra, with the aim of improving on traditional chemometric 
quantification techniques. In this paper, we investigate the use of wavelet 
transforms for data and noise reduction, in conjunction with neural networks 
designed using genetic algorithms, for the prediction of cocaine concentration 
in mixtures using their Raman spectral data.    

1  Introduction 

Raman spectroscopy is the measurement of the intensity and wavelength of 
inelastically scattered light from molecules when they are excited by a 
monochromatic light source. Its versatility, due to ease of sampling via coupling to 
fibre optics and microscopes [1], allied to the ability to sample through glass and 
plastics [2], has made it a very practical technique for use by law enforcement 
agencies in the detection of illicit materials [3,4].  

The presence of diluents in a drug mixture pose a problem for Raman 
spectroscopy in real-world situations as they may interfere with the correct 
identification and quantification of target materials by masking important peaks [4]. 
Fluorescent compounds, poor spectral reproducibility of spectral intensities and poor 
signal/noise ratios also have a detrimental effect on Raman spectra elucidation [2]. In 
order to develop methods to overcome these problems, noise reduction and Machine 
Learning (ML) techniques are being investigated. 

The objective of this study is to develop accurate techniques for automatically 
estimating the concentration of cocaine in a sample containing diluents. In order to 
achieve this objective two main factors need to be addressed. The first is the noise 
inherent in spectroscopic data. Noise is a consequence of environmental and 
instrumental conditions and its removal from the data is imperative for accurate 
prediction. The second factor is a significant challenge to the ML community and lies 
in the high dimensionality and low sample number commonly found in this domain. 
Poor generalisation and overfitting to the training data are a consequence of this 
second problem.  Accordingly, the first aim of this work is to assess the effect of 
simultaneous dimensionality and noise reduction of spectral data using a wavelet 
transform on the predictive ability of various machine learning methods. Wavelet 



transforms are used for noise reduction and compression in signals and for image 
compression. The specific transforms applied in this paper are the Daubechies D4 
transform [9] and the Haar transform [9]. 

In spectroscopy, the most popular techniques for regression are chemometric 
methods (see Section 3.4) and feed-forward neural networks. Feed forward neural 
networks are proven tools for quantification and classification of spectroscopy data; 
however, they are often difficult to optimise [6,7], and small changes in the 
configuration of a neural network can result in dramatic changes in its predictive 
power [12]. Therefore, the second aim of this work is to assess the use of a genetic 
algorithm to evolve an optimal neural network configuration for cocaine prediction.  
This approach, however, is conditional on spectral data dimensionality reduction.  
High spectral dimensionality would render a combined neural network/genetic 
algorithm approach impractical due to long neural network training times.  

Raman spectra were collected from 36 solid samples comprising different mixtures 
of cocaine (concentration varied between 0 and 100%), caffeine and glucose. Clearly, 
this is a very small training dataset. However, as discussed above, in many real-world 
applications, it is required to identify materials based on a small number of reference 
spectra. Caffeine and glucose are typical examples of diluents that could be mixed 
with illegal narcotics and make the quantification of cocaine from Raman spectra 
more difficult. Details of the data collection, preprocessing and the samples are 
available in previous publications [3, 4].  

2 Related Research 

This paper extends previous work by Madden & Ryder [4], which analysed the same 
dataset, who used a genetic algorithm for data reduction, wrapped around neural 
network and kNN predictors. That study is compared to this work in Section 4.4. The 
wavelet transform has been used to reduce noise [9] and compress data [10] in areas 
such as image recognition by neural networks [11] and damage detection of 
composite structures using neural networks [12]. Wavelet transforms have been used 
in spectroscopic applications also for noise reduction and the reduction of 
dimensionality. Trygg & Wold [5] successfully used the Daubechies D4 wavelet 
transform to pre-process near-infrared spectra prior to using Partial Least Squares 
(PLS) for regression. Shao et al. [13] showed that a wavelet transform could greatly 
decrease the time needed for resolution of nuclear magnetic resonance spectra using 
the immune algorithm.  

The wavelet transform has been used in pattern recognition to extract sharp 
features from an image, with Osowski & Nghia [11] showing that wavelet-
transformed data in conjunction with neural networks perform well for shape 
recognition. A similar amalgamation of wavelet transforms and neural networks has 
been used for the interpretation of infrared spectra by Tchistiakov et al. [14]. They 
successfully used a wavelet transform to reduce the dimensionality of their infrared 
spectra and increase the efficiency of their neural networks. They determined the 
neural network configuration manually, by varying the size of the hidden layer from 3 



to 20 nodes, and using combinations of many different neural networks for 
hierarchical modelling. 

Very little work has been published on the use of wavelet transforms in 
conjunction with neural networks and Raman spectra. Estienne & Massart [15] 
compared a wavelet transform and a Fourier transform for noise reduction before 
using Principal Component Regression with variable selection and Partial Least 
Squares for prediction. Interestingly, while they preferred the Fourier transform to the 
wavelet transform for noise reduction, they found that the performance of models 
based on transformed data were equivalent or worse than those based on the raw 
spectral data.  

The use of genetic algorithms to optimise the number of inputs, number of hidden 
nodes and the number of training epochs for neural networks has been used for the 
calibration of voltammetric data by Richards et al. [6]. The G-Prop algorithm of 
Castillo et al. [7] for the optimisation of weights and structure of neural networks is 
also related to the method used in this paper to configure our neural networks. 

3 Machine Learning Analysis 

3.1 Data Reduction 

There were two different wavelet transforms compared in this study, the Haar 
transform and Daubechies D4 transform. The Daubechies D4 requires that the starting 
number of inputs is a power of 2, so the 510 spectral data points was padded with 
zeros to make 512 data points. The Haar transform is a simple transform which has 
two scaling function coefficients describing a low-pass filter, listed in Eq. (1), and a 
scaling function given by Eq. (2). 
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The Daubechies D4 transform has four scaling function coefficients, given in Eq. 
(3), and the scaling function described by Eq. (4). 
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Each step of the wavelet transform applies the low pass filter to the data, 
effectively compressing the data by a half. Figure 1 illustrates successive 
compressions using the Haar transform and Daubechies D4 transform on a Raman 
spectrum from pure cocaine. Clearly, by the time 6 successive transforms have been 
applied, reducing the data to 8 points, most detail has been lost. Note that it is 
necessary to use different intensity scales for graphing the two transforms in Figure 1, 



because through successive compressions the Haar transformed data decreases in 
intensity while the Daubechies D4 transformed spectrum increases in intensity. 
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Figure 1 Successive compressions of 100% cocaine Raman spectrum 

3.2 Neural Network Analyses 

In this work, a conventional feed-forward neural network structure with one hidden 
layer was used. Our implementation is based on one by Brierley [17]. The inputs 
corresponded to Raman spectrum data, with transformations applied as discussed 
below, and the single output corresponded to a prediction of cocaine concentration. 



The activation function used in this work is the tanh activation function and networks 
were trained using the standard backpropagation with momentum algorithm.  

3.3 Genetic Algorithm for Evolution of Neural Network Configuration 

In this study, each individual in the population represents a possible configuration for 
a neural network. Each individual has four components describing different aspects of 
the configuration: number of hidden nodes; learning rate from input to hidden layer; 
learning rate from hidden to output layer; and momentum term. A real valued 
representation [18] was used to describe these components. Each component was 
assigned maximum and minimum values, based on previous experiments and 
experience with the dataset; these are detailed in Table 1.  To calculate the fitness of a 
member of the population, a neural network was built based on the information 
encoded within that individual. This was then trained for 300 epochs and tested on the 
wavelet-compressed data. The root mean squared error in prediction (RMSEP), 
calculated using leave-one-out cross-validation, was used as the fitness measure for 
each individual.  

Table 1 Settings for components in genetic algorithm 

Neural Network Component Minimum Maximum 
Number of Hidden Nodes 1 30 
Input–Hidden Learning Rate 0.001 0.181 
Hidden–Output Learning Rate 0.001 0.181 
Momentum 0.001 0.011 

 
For this work, a parallel island model was used [18], where each island had a fixed 

population size of 50 and 19 islands were used. The parallel island model was used so 
that analysis could be distributed across multiple computers but is not strictly 
necessary for the working of the technique employed here. Our breeding strategy 
involves elitism, crossover, mutation and migration as follows.  
• Elitism: The top two fittest individuals from each population are copied without 

mutation into next generation, to ensure a steady progression in fitness.  
• Crossover: The preceding population was sorted by descending fitness and two 

randomly-selected individuals from the top 10 are crossed over. This was repeated 
until a new population was produced. 

• Mutation: The mutation rate was set at 10%, i.e. one mutation in every 10 
individuals. This high level of mutation is used to counter-balance the combined 
effects of using elitism and restricting crossovers to component boundaries. 

• Migration: The migration rate between islands was set at 5%, i.e. every generation 
there was a 5% probability of incorporating the best individual from a randomly 
chosen island population (A) into a population (B) overwriting the worst 
individual in population (B).  

The initial weights in the neural networks were set randomly. They were initially 
set using the Nguyen and Widrow algorithm [19]; however, this was not found to 
improve the predictive power of the network or decrease the training time.  



3.4 Chemometric Methods 

Partial Least Squares (PLS) regression [5,16] and Principal Component Regression 
(PCR) [15] were carried out on the data using Unscrambler, a software package from 
CAMO AS, Norway. Both PCR and PLS regression extract successive linear 
combinations of the predictors, called factors, with the intention that there is no 
correlation between the factor score variables used in the predictive regression model. 
The techniques differ, however, in the methods used in extracting factor scores. PCR 
regression produces factors reflecting the covariance structure between the predictor 
variables, while PLS regression produces factors reflecting the covariance structure 
between the predictor and response variables [20]. 

4 Experiments and Results 

Two sets of experiments were performed: 

1. An evaluation of the impact of the wavelet transforms, to compare the Haar and 
Daubechies D4 transforms and gauge their value for data reduction when used 
with various ML algorithms for quantification of Raman spectra. 

2. An evaluation of the effectiveness of automatically optimising the neural network 
configurations, using a genetic algorithm approach. This set of experiments used 
the transform that had been found to be most promising in the first set of 
experiments. 

These experiments are described in the following sub-sections. 

4.1 Evaluation of Wavelet Transforms 

In the first group of experiments, the effect of successive compressions of the spectral 
data using the wavelet transforms (see Section 3.1) on the predictive performance of 
various ML techniques is investigated. The algorithms used are MP5 trees (MP5), 
Support Vector Machines (SVM), k-Nearest Neighbour (kNN), Decision Table (DT), 
M5 Rules (M5R) and Neural Network (NN). Each of these algorithms was 
implemented using the Weka ML software [21] except for the neural network, see 
Section 3.2. 

Figures 2 and 3 show results obtained using the Daubechies D4 transform and the 
Haar transform in conjunction with the six different ML techniques listed above. In 
the graphs, the y-axis measures the RMSEP of the ML techniques using leave-one-out 
cross-validation.  

The figures demonstrate that compression of the data does not significantly 
increase and in most cases decrease the error of prediction in ML methods. The 
exception to this is kNN, whose error remains the same through one compression and 
then increases through successive compressions. 
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Figure 2 Effect of successive compressions using Daubechies D4 on RMSEP 
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Figure 3 Effect of successive compressions using Haar on RMSEP 

 
In order to determine which of the transforms to use in the second set of 

experiments the effect of both transforms on neural network prediction was 
compared.  It can be seen from Figures 2 and 3 that both transforms in conjunction 
with neural networks perform quite well with similar accuracy; however the 
Daubechies D4 transform keeps its predictive power down to a compression level of 8 
data points (6 successive compressions), and exhibits less variability relative to the 
network structure at 16 data points (5 successive compressions). 

4.2 Results of Neural Network Evolution 

The second set of experiments focussed on optimising neural network configurations 
automatically using the genetic algorithm approach described earlier in Section 3.3. 
The Daubechies D4 transform was chosen as the compression algorithm for these 
experiments, and spectra compressed to 16 and to 32 data points were both evaluated. 
(Because of the time-consuming nature of the genetic algorithm, spectra with less 
compression were not evaluated in this part of the study.) Figure 4 plots the RMSEP 



for the fittest neural network in a given generation, against the number of generations. 
It is interesting to note in Figure 4 that neural networks using the data compressed 5 
successive times (16 points) are slightly less amenable to optimisation than those 
using the data compressed 4 times (32 points). 
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Figure 4 Fitness of best individual on island number 16 

 
The configurations for the neural network with 16 and 32 inputs chosen by the genetic 
algorithm are detailed in Table 2.   

Table 2 Optimal neural network configurations found using genetic algorithm 

Structural Element 32 Data Points 16 Data Points 
Number of Hidden Nodes 3 13 
Learning Rate (Input-Hidden) 0.0015 0.0011 
Learning Rate (Hidden-Output) 0.0897 0.1272 
Momentum Term 0.0055 0.0079 

4.3 Comparison with Chemometric Methods 

The optimised neural network using wavelet-compressed data performed well relative 
to both of the traditional chemometric methods, PCR and PLS regression. The 
chemometric methods were both evaluated relative to the data using leave-one-out 
cross-validation, yielding the results listed in Table 3. The performance of the best 
evolved neural network (corresponding to the lower line in Figure 4) is also listed for 
comparison. It can be seen from Table 3 that a neural network using the compressed 
data with configuration evolved using a genetic algorithm can greatly improve upon 
traditional statistical methods for the prediction of cocaine concentration from Raman 
spectra. 

Table 3 Results of prediction methods using leave-one-out cross validation 

Method RMSEP (%) 
PLS Regression using Uncompressed Data 5.27 
PCR using Uncompressed data 5.21 
Evolved Neural Network using Wavelet-Reduced Data 4.55 



4.4 Comparison with Previous Results 

Two of the authors of this paper have previously studied the quantitative analysis of 
Raman spectra using the same data set as this study [10]. They compared traditional 
chemometric methods to the k-Nearest Neighbour algorithm and neural networks for 
the prediction of cocaine concentration. They used a genetic algorithm to choose 
points for input to the neural network in a wrapper approach to feature selection.  
They also used all their prediction methods in an ensemble, which produced better 
results than any of the individual predictors. Their main results are summarised in 
Table 4. The results below represent the best run of each algorithm. 

Table 4 Results of Madden and Ryder [4] for the same data set 

Method RMSEP (%) 
Neural Network 5.21 
k-Nearest Neighbour 5.82 
Ensemble 4.86 

 
Comparing with Table 3 with Table 4, it would appear that the approach used in 

this study has produced better results. 

5 Conclusions 

Data reduction using successive applications of either the Haar transform or the 
Daubechies D4 transform does not weaken predictive performance until the number 
of remaining data points becomes very small, with the Daubechies D4 transform in 
particular showing good performance down to a compression level of 8 data points. In 
the case of many ML techniques the predictive performance on Raman spectral data is 
actually strengthened through the use of a wavelet transform. We believe this increase 
is due to noise and dimensionality reduction and would have applications in other 
spectroscopic and signal analysis areas. 

In the second set of experiments, the resulting networks with optimised 
configuration, using wavelet transformed data, outperformed PLS and PCR 
algorithms for the prediction of cocaine concentration from Raman spectral data, and 
also outperformed previous ML approaches to analysing the same data.  

Accordingly, it is concluded that the approach proposed here is an effective 
technique for use in Raman spectral prediction.  
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