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Abstract

This paper presents the results of an investigation into the use of machine learning
methods for the identification of narcotics from Raman spectra. The classification
of spectral data and other high dimensional data, such as images, gene-expression
data and spectral data, poses an interesting challenge to machine learning, as the
presence of high numbers of redundant or highly correlated attributescan seri-
ously degrade classification accuracy. This paper investigates the use of Principal
Component Analysis (PCA) to reduce high dimensional spectral data and to im-
prove the predictive performance of some well known machine learning methods.
Experiments are carried out on a high dimensional spectral dataset. These ex-
periments employ the NIPALS (Non-Linear Iterative Partial Least Squares) PCA
method, a method that has been used in the field of chemometrics for spectral
classification, and is a more efficient alternative than the widely used eigenvector
decomposition approach. The experiments show that the use of this PCA method
can improve the performance of machine learning in the classification of high
dimensionsal data.

1 Introduction

The automatic identification of illicit materials using Raman spectroscopy is of signif-
icant importance for law enforcement agencies. High dimensional spectral data can
pose problems for machine learning as predictive models based on such data run the
risk of overfitting. Furthermore, many of the attributes maybe redundant or highly
correlated, which can also lead to a degradation of prediction accuracy.

This problem is equally relevant to many other application domains, such as the
classification of gene-expression microarray data [1], image data [2] and text data [3].
In the classification task considered in this paper, Raman spectra are used for the
identification of acetaminophen, a pain-relieving drug that is found in many over-the-
counter medications, within different mixtures. Typically, methods from a field of
study known as chemometrics have been applied to this particular problem [4], and
these methods use PCA to handle the high dimensional spectra. PCA is a classical sta-
tistical method for transforming attributes of a dataset into a new set of uncorrelated
attributes called principal components (PCs). PCA can be used to reduce the dimen-
sionality of a dataset, while still retaining as much of thevariability of the dataset as
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possible. The goal of this research is to determine if PCA canbe used to improve the
performance of machine learning methods in the classification of such high dimen-
sional data.

In the first set of experiments presented in this paper, the performance of five
well known machine learning techniques (Support Vector Machines, k-Nearest Neigh-
bours, C4.5 Decision Tree, RIPPER and Naive Bayes) along with classification by
Linear Regression are compared by testing them on a Raman spectral dataset. A num-
ber of pre-processing techniques such as normalisation andfirst derivative are applied
to the data to determine if they can improve the classification accuracy of these meth-
ods. A second set of experiments is carried out in which PCA and machine learn-
ing (and the various pre-processing methods) are used in combination. This set of
PCA experiments also facilitates a comparison of machine learning with the popular
chemometric technique of Principal Component Regression (PCR), which combines
PCA and Linear Regression.

The main contributions of this research are as follows:

1. It presents a promising approach for the classification ofsubstances within com-
plex mixtures based on Raman spectra, an application that has not been widely
considered in the machine learning community. This approach could also be
applied to other high dimensional classification problems.

2. It proposes the use of NIPALS PCA for data reduction, a method that is much
more efficient than the widely used eigenvector decomposition method.

3. It demonstrates the usefulness of PCA for reducing dimensionality and improv-
ing the performance of a variety of machine learning methods. Previous work
has tended to focus on a single machine learning method. It also demonstrates
the effect of reducing data to different numbers of principal components.

The paper is organised as follows. Section 2 will give a briefdescription of Ra-
man spectroscopy and outline the characteristics of the data it produces. Section 3
describes PCA, the NIPALS algorithm for PCA that is used hereand the PCR method
that incorporates PCA into it. Section 4 provides a brief description of each machine
learning technique used in this investigation. Experimental results along with a dis-
cussion are presented in Section 5. Section 6 describes related research and Section 7
presents the conclusion of this study.

2 Raman Spectroscopy

Raman spectroscopy is the measurement of the wavelength andintensity of light that
has been scattered inelastically by a sample, known as the Raman effect [5]. This
Raman scattering provides information on the vibrational motions of molecules in the
sample compound, which in turn provides a chemical fingerprint. Every compound
has its own unique Raman spectrum that can be used for sample identification. Each
point of a spectrum represents the intensity recorded at a particular wavelength. A
Raman dataset therefore has one attribute for each point on its constituent spectra.



Raman spectra can be used for the identification of materialssuch as narcotics [4],
hazardous waste [6] and explosives [7].

Raman spectra are a good example of high dimensional data; a Raman spectrum
is typically made up of 500-3000 data points, and many datasets may only contain
20-200 samples. However, there are other characteristics of Raman spectra that can be
problematic for machine learning:

• Collinearity: many of the attributes (spectral data points) are highly correlated
to each other which can lead to a degradation of the prediction accuracy.

• Noise: particularly prevalent in spectra of complex mixtures. Predictive models
that are fitted to noise in a dataset will not perform well on other test datasets.

• Fluorescence: the presence of fluorescent materials in a sample can obscurethe
Raman signal and therefore make classification more difficult [4].

• Variance of Intensity: a wide variance in spectral intensity occurs between dif-
ferent sample measurements [8].

3 Principal Component Analysis

In the following description, the dataset is represented bythe matrixX, whereX is a
N × p matrix. For spectral applications, each row ofX, thep-vectorxi contains the
intensities at each wavelength of the spectrum samplei. Each column,Xj contains all
the observations of one attribute. PCA is used to overcome the previously mentioned
problems of high-dimensionality and collinearity by reducing the number of predictor
attributes. PCA transforms the set of inputsX1,X2, . . . ,XN into another set of col-
umn vectorsT1, T2, . . . , TN where theT ’s have the property that most of the original
data’s information content (or most of its variance) is stored in the first fewT ’s (the
principal component scores). The idea is that this allows reduction of the data to a
smaller number of dimensions, with low information loss, simply by discarding some
of the principal components (PCs). Each PC is a linear combination of the original in-
puts and each PC is orthogonal, which therefore eliminates the problem of collinearity.
This linear transformation of the matrixX is specified by ap× p matrixP so that the
transformed variablesT are given by:

T = XP or alternativelyX is decomposed as follows:X = TPT (1)

whereP is known as theloadings matrix. The columns loadings matrixP can be
calculated as the eigenvectors of the matrixXT X [9], a calculation which can be
computationally intensive when dealing with datasets of 500-3000 attributes. A much
quicker alternative is the NIPALS method. The NIPALS methoddoes not calculate
all the PCs at once as is done in the eigenvector approach. Instead, it calculates the
first PC by getting the first PC score,t1, and the first vector of the loadings matrix,p′
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from the sample matrixX. Then the outer product,t1p′1, is subtracted fromX and the
residual,E1, is calculated. This residual becomesX in the calculation of the next PC
and the process is repeated until as many PCs as required havebeen generated. The
algorithm for calculating thenth PC is detailed below [10]:



1. Take a vectorxj from X and call ittn:tn = xj

2. Calculatep′n: p′n = t′nX/t′ntn

3. Normalisep′n to length 1:p′nnew = p′nold/||p
′

nold||

4. Calculatetn: tn = Xpn/p′npn

5. Comparetn used in step 2 with that obtained in step 4. If they are the same,
stop (the iteration has converged). If they still differ, goto step 2.

After the first PC has been calculated (i.e.t1 has converged),X in steps 2 and 4 is
replaced by its residual, for example, to generate the second PC,X is replaced byE1,
whereE1 = X − t1p

′

1
.

See Ryder [4], O’Connellet al. [8] and Conroyet al. [6] for examples of the use
of PCA in the classification of materials from Raman spectra.

3.1 Principal Component Regression

The widely used chemometric technique of PCR is a two-step multivariate regression
method, in which PCA of the data is carried out in the first step. In the second step,
a multiple linear regression between the PC scores obtainedin the PCA step and the
predictor variable is carried out. In this regression step,the predictor variable is a
value that is chosen to represent the presence or absence of the target in a sample, e.g.
1 for present and -1 for absent. In this way, a classification model can be built using
any regression method.

4 Machine Learning

4.1 Support Vector Machine

The SVM [11] is a powerful machine learning tool that is capable of representing
non-linear relationships and producing models that generalise well to unseen data.
For binary classification, a linear SVM (the simplest form ofSVM) finds an optimal
linear separator between the two classes of data. This optimal separator is the one
that results in the widest margin of separation between the two classes, as a wide
margin implies that the classifier is better able to classifyunseen spectra. To regulate
overfitting, SVMs have a complexity parameter,C, which determines the trade-off
between choosing a large-margin classifier and the amount bywhich misclassified
samples are tolerated. A higher value ofC means that more importance is attached
to minimising the amount of misclassification than to findinga wide margin model.
To handle non-linear data, kernels (e.g. Radial Basis Function (RBF), Polynomial or
Sigmoid) are introduced to map the original data to a new feature space in which a
linear separator can be found. In addition to theC parameter, each kernel may have
a number of parameters associated with it. For the experiments reported here, two
kernels were used: the RBF kernel, in which the kernel width,σ, can be changed, and
the Linear kernel, which has no extra parameter. In general,the SVM is considered
useful for handling high dimensional data.



4.2 k-Nearest Neighbours

k-Nearest Neighbours (k-NN) [12] is a learning algorithm which classifies a test sam-
ple by firstly obtaining the class of thek samples that are the closest to the test sample.
The majority class of these nearest samples (or nearest single sample whenk = 1) is
returned as the prediction for that test sample. Various measures may be used to de-
termine the distance between a pair of samples. In these experiments, the Euclidean
distance measure was used. In practical terms, each Raman spectrum is compared
to every other spectrum in the dataset. At each spectral datapoint, the difference in
intensity between the two spectra is measured (distance). The sum of the squared dis-
tances for all the data points (full spectrum) gives a numerical measure of how close
the spectra are.

4.3 C4.5

The C4.5 decision tree [13] algorithm generates a series of if-then rules that are rep-
resented as a tree structure. Each node in the tree corresponds to a test of the intensity
at a particular data point of the spectrum. The result of a test at one node determines
which node in the tree is checked next until finally, a leaf node is reached. Each leaf
specifies the class to be returned if that leaf is reached.

4.4 RIPPER

RIPPER [14] (Repeated Incremental Pruning to Produce ErrorReduction) is an in-
ductive rule-based learner that builds a set of prepositional rules that identify classes
while minimising the amount of error. The number of trainingexamples misclassified
by the rules defines the error. RIPPER was developed with the goal of handling large
noisy datasets efficiently whilst also achieving good generalisation performance.

5 Experimental Results

5.1 Dataset

In the following experiments, the task is to identify acetaminophen. The acetaminophen
dataset comprises the Raman spectra of 217 different samples. Acetaminophen is
present in 87 of the samples, the rest of the samples being made up of various pure
inorganic materials. Each sample spectrum covers the range350-2000 cm−1 and is
made up of 1646 data points. For more details on this dataset,see O’Connellet al. [8].

5.2 Comparison of Machine Learning Methods

Table 1 shows the results of six different machine learning classification methods using
a 10-fold cross-validation test on the acetaminophen dataset. The first column shows
the average classification error achieved on the raw dataset(RD). The three remaining
columns show the results of using each machine learning method in tandem with a
pre-processing technique:



Table 1: Percentage Classification Error of Different Machine Learning Methods on
Acetaminophen Dataset

Pre-processing Technique
Method RD ND FD FND

Linear SVM 6.45 2.76 3.23 0.92*
(C=100) (C=1) (C=10000) (C=0.1)

RBF SVM 5.07 2.76 1.84 0.92*
(C=1000, (C=1000, (C=10000, (C=10,
σ=0.1) σ=0.001) σ=10) σ=0.01)

k-NN 11.06 7.83 4.61 4.15
(k=1) (k=1) (k=10) (k=1)

C4.5 10.14 7.83 1.84 1.38

RIPPER 15.67 11.06 3.69 2.3

Naive Bayes 25.35 13.82 25.81 5.53

Linear Reg. 27.65 16.13 25.35 20.28

• ND: dataset with each sample normalised. Each sample is divided across by
the maximum intensity that occurs within that sample.

• FD: a Savitzky-Golay first derivative [15], seven-point averaging algorithm is
applied to the raw dataset.

• FND: a normalisation step is carried out after applying a first derivative to each
sample of the raw dataset.

Table 1 shows the lowest average error average achieved by each classifier and
pre-processing combination. For all these methods, apart from k-NN, the WEKA [12]
implementation was used. The default settings were used forC4.5, RIPPER and Naive
Bayes. For SVMs, RBF and Linear kernels with different parameter settings were
tested. The parameter settings that achieved the best results are shown in parentheses.
The Linear SVM was tested for the following values ofC: 0.1, 1, . . . , 10000. The
same range ofC values were used for RBF SVM, and these were tested in combi-
nation with theσ values of: 0.0001, 0.001, . . . , 10. For k-NN, the table shows the
value fork (number of neighbours) that resulted in the lowest percentage error. The
k-NN method was tested for all values ofk from 1 to 20. The results of each ma-
chine learning and pre-processing technique combination of Table 1 were compared
using a paired t-test based on a 5% confidence level and using acorrected variance
estimate [16]. The lowest average error over all results in Table 1 of 0.92% (i.e. only
two misclassifications, achieved by both Linear and RBF SVM)is highlighted in bold
and indicated by an asterisk. Those results which do not differ significantly (according
to the t-test) are also highlighted in bold.



On both the raw (RD) and normalised (ND) dataset, both SVM models perform
better than any of the other machine learning methods, as there is no significant dif-
ference between the best overall result and the SVM results on RD and ND, whereas a
significant difference does exist between the best overall result and all other machine
learning methods on RD and ND. This confirms the notion that SVMs are particu-
larly suited to dealing with high dimensional data and it also suggests that SVMs are
capable of handling a high degree of collinearity in the data. Linear Regression, on
the other hand, performs poorly with all pre-processing techniques. This poor per-
formance can be attributed to its requirement that all the columns of the data matrix
arelinearly independent [9], a condition that is violated in highly correlated spectral
data. Similarly, Naive Bayes has recorded a high average error on the RD, ND and
FD data. This is presumably because of its assumption of independence of each of
the attributes. It is clear from this table that the pre-processing techniques of FD and
FND improve the performance of the majority of the classifiers. For SVMs, the error
is numerically smaller, but not a significant improvement over the RD and ND results.
Note that Linear Regression is the only method that did not achieve a result to compete
with the best overall result.

Overall, the SVM appears to exhibit the best results, matching or outperforming
all other methods on the raw and pre-processed data. With effective pre-processing,
however, the performance of other machine learning methodscan be improved so that
they are close to that of the SVM.

5.3 Comparison of Machine Learning methods with PCA

As outlined in Section 3, PCA is used to alleviate problems such as high dimension-
ality and collinearity that are associated with spectral data. For the next set of exper-
iments, the goal was to determine whether machine learning methods could benefit
from an initial transformation of the dataset into a smallerset of PCs, as is used in
PCR. The same series of cross-validation tests were run, except in this case, during
each fold the PC scores of the training data were fed as inputsto the machine learning
method. The procedure for the 10-fold cross-validation is as follows:

1. Carry out PCA on the training data to generate a loadings matrix.

2. Transform training data into a set of PC scores using the firstP components of
the loadings matrix.

3. Build a classification model based on the training PC scores data.

4. Transform the held out test fold data to PC scores using theloadings matrix
generated from the training data.

5. Test classification model on the transformed test fold.

6. Repeat steps 1-5 for each iteration of the 10-fold cross-validation.

With each machine learning and pre-processing method combination, the above
10-fold cross-validation test was carried out forP=1 to 20 principal components.



Table 2: Percentage Classification Error of Different Machine Learning Methods with
PCA on Acetaminophen Dataset

Pre-processing Technique
Method RD ND FD FND

Linear SVM 5.07 1.84 3.23 0.46
(P=18, (P=13, (P=14, (P=4,
C=0.1) C=0.1) C=0.01) C=0.1)

RBF SVM 6.91 2.76 2.23 0.46
(P=19, (P=16, (P=12, (P=5
C=100, C=10, C=10, C=10,
σ=0.001) σ=0.001) σ=0.001) σ=0.001)

k-NN 11.06 5.99 2.3 0.0*
(P=17,k=3) (P=10,k=1) (P=14,k=1) (P=4,k=5)

C4.5 7.83 7.37 7.37 1.38
(P=20) (P=19) (P=5) (P=6)

RIPPER 11.98 8.29 6.45 2.3
(P=20) (P=8) (P=5) (P=3)

Naive Bayes 38.71 10.6 11.52 3.23
(P=1) (P=8) (P=5) (P=2)

PCR 9.22 5.53 8.29 1.38
(PCA+Linear Reg.) (P=16) (P=20) (P=11) (P=80)

Therefore, 20 different 10-fold cross-validation tests were run for Naive Bayes, for
example. For those classifiers that require additional parameters to be set, more tests
had to be run to test the different combinations of parameters, e.g.C, σ, andP for
RBF SVM. The same ranges forC, σ andk were tested as those used for the experi-
ments of Table 1.

Table 2 shows the lowest average error achieved by each combination of machine
learning and pre-processing method with PCA. The number of PCs used to achieve
this lowest average error is shown in parentheses, along with the additional parameter
settings for the SVM and k-NN classifiers. As with Table 1, thebest result over all the
results of Table 2 is highlighted in bold and denoted by an asterisk, with those results
that bear no significant difference from the best overall result also highlighted in bold.
Again, the pre-processing method of FND improves the performance of the majority
of the classifiers, Naive Bayes being the exception in this case. In comparing the best
result of Table 1 with the best result of Table 2 for each machine learning method (all
in the FND column), it can be seen that the addition of the PCA step results in either
the same error (C4.5 and RIPPER) or a numerically smaller error (Linear SVM, RBF
SVM, k-NN and Linear Regression). The improvement effectedby the inclusion of



this PCA step is particularly evident with the Linear Regression technique. Note that
this combination of PCA and Linear Regression is equivalentto PCR.

Despite the fact that for the SVM and k-NN classifiers, there is no significant
difference between the best results with or without PCA, it is noteworthy that the
SVM and k-NN classifiers with PCA were capable of achieving such low errors with
far fewer attributes, only four PCs for the Linear SVM and k-NN and 5 PCs for the
RBF SVM. This makes the resulting classification model much more efficient when
classifying new data. In contrast, PCR required a much greater number of PCs (80) to
achieve its lowest error. (This result was discovered in theexperiment detailed in the
next section.)

To make an overall assessment of the effect of using PCA in combination with
machine learning, a statistical comparison (paired t-testwith 5% confidence level) of
the 28 results of Table 1 and Table 2 was carried out. This indicates that, overall, a
significant improvement in the performance of machine learning methods is gained
with this initial PCA step. It can therefore be concluded that the incorporation of PCA
into machine learning is useful for the classification of high dimensional data.

5.4 Effect of PCA on Classification Accuracy

To further determine the effect of PCA on the performance of machine learning meth-
ods, each machine learning method (using the best parametersetting and pre-processing
technique) was tested using larger numbers of PCs. Each method was tested for values
of P in the range 1-640.

Figure 1: Effect of changing the number of PCs on Machine Learning Classification
Error

Figures 1 and 2 shows the change in error for each of the methods versus the
number of PCs retained to build the model. It can be seen from these graphs that as PCs
are added, error is initially reduced for all methods. Most methods require no more
than six PCs to achieve the lowest error. After this lowest error point, the behaviour of



the methods differ somewhat. Most of the classifiers suffer drastic increases in error
within the range of PCs tested: Naive Bayes, PCR, RBF SVM, RIPPER and k-NN
(although not to the same extent as the previous examples). In contrast, the error for
C4.5 never deviates too much from its lowest error at six PCs.This may be due to its
ability to prune irrelevant attributes from the decision tree model. The Linear SVM
initially seems to follow the pattern of the majority of classifiers, but then returns to
a more acceptable error with the higher number of PCs. Overall, it is evident that
all of the classifiers, apart from PCR, will achieve their best accuracy with a relatively
small number of PCs; it is probably unnecesary to generate any more than twenty PCs.
However, the number of PCs required will depend on the underlying dataset. Further
experiments on more spectral data, or other examples of highdimensional data, are
required to determine suitable ranges of PCs for these machine learning methods.

Figure 2: Effect of changing the number of PCs on Machine Learning Classification
Error

5.5 Experiments on Chlorinated Dataset

To extend the results of the Acetaminophen experiments, a further set of experiments
was carried out on another dataset of Raman spectra: Chlorinated dataset. This dataset
contains the spectra for 230 sample mixtures, each made up ofdifferent combinations
of solvents (25 different solvents were used). Three separate classification experiments
were based on this dataset. In each case the task is to identify a specific chlorinated
solvent. As can be seen from the results of Table 3, these experiments focussed on
only two pre-processing techniques: the normalisation (ND) is used as the baseline
method for comparison and the first derivative with normalisation (FND) is used as it
produced the best results on the Acetaminophen dataset. This table directly compares
the performance of each machine learning and pre-processing combination without
PCA against the same combination with PCA. Again, for many ofthe machine learn-
ing methods, the use of PCA appears to improve performance. However, two major



Table 3: Comparison of Machine Learning with and without PCAon Chlorinated
Dataset: Percentage Classification Error (N=No PCA, Y=PCA used)

Dichloromethane Trichloroethane Chloroform
ND FND ND FND ND FND

Method N Y N Y N Y N Y N Y N Y

LSVM 1.74 0.43 1.74 2.17 5.65 2.61 6.09 2.61 3.91 1.74 5.22 4.78
RBF 0.43 0.43 0.87 1.74 5.22 2.61 6.09 2.61 4.35 3.91 5.22 4.35
k-NN 8.26 9.13 10.43 9.57 16.09 13.35 13.48 11.74 23.91 19.13 20.00 20.00
C4.5 3.04 8.26 0.43 8.26 7.39 16.09 3.91 16.52 3.91 14.78 3.04 16.96
RIP. 6.52 14.78 0.43 12.17 11.30 18.70 6.09 13.04 3.04 18.70 3.04 16.09
NB 43.04 41.30 37.83 26.09 53.48 49.13 40.87 34.35 56.09 51.74 40.00 35.22
Reg. 10.87 10.00 13.04 18.70 18.70 16.96 26.52 16.52 13.91 12.17 25.22 18.70

exceptions stand out: C4.5 and RIPPER, both of which are forms of a rule-leaning
algorithm. Both of these methods suffer a notable loss of accuracy when PCA is
employed. This is in contrast with the results on Acetaminophen, in which C4.5 and
RIPPER gained a small improvement with PCA on the ND dataset,and achieved iden-
tical accuracy (to when no PCA was used) on the FND dataset. A comparison of the
non-PCA results with those obtained with PCA shows no significant difference. How-
ever, if the results of these rule-based algorithms are omitted, a significant difference
is observed that confirms the results achieved on the Acetaminophen dataset.

To determine the cause of the drop in performance of C4.5, an analysis was carried
out on the decision trees produced by C4.5 when trained on thenormalised Chloro-
form dataset. When the original dataset is used, C4.5 generates a tree of size 11.
When the first 27 PCs (this number resulted in the best performance) scores are used
as input, C4.5 generates a much more complex tree of size 35. Furthermore, the main
branch of this tree is based on PC24 and many samples are classified at a leaf based on
PC26. A key point is that PCs are ordered according to their contribution to the total
variance; PCs 24 and 26 account for very little (less than 0.2%) of the total variance
in the scores data. Any model that assigns a strong weightingto these attributes is in
danger of overfitting to the training data and could therefore exhibit poor generalisa-
tion ability. A similar comparison of the non-PCA and PCA trees produced from the
Acetaminophen dataset shows that a size difference exists,but is not as great: the tree
based on original data has size 7 and the tree based on PC scores data has size 13.
Of more importance is the fact that, for the Acetaminophen dataset, the tree based on
PC scores selected PC3 and PC2 as key attributes; these attributes account for a much
greater percentage of the total variance (about 38%).

This analysis shows that the performance of C4.5 may be adversely affected by
the use of PC transformed data when compared with its performance on the original
data. This occurs when key nodes of the tree are based on PC scores of low variance.
Apart from abandoning PCA for decision trees altogether, one alternative is to use



the original data and PC scores combined, thus allowing C4.5to select both from
the original set of attributes and from the linear combination attributes. Popelinsky
and Brazdil [17] found this approach of adding PC attributesrather than replacing the
original attributes to give better results. (They do not report the differences, however.)
They found what they described as modest gains in the use of additional PC scores to
the dataset when the C5.0 decision tree (a later commerical version of C4.5) was used.
We tested this approach on the normalised versions of the spectral datasets with C4.5.
In three of the classification tasks, the error achieved was identical to that achieved
without PCA; a minor improvement was found for the Trichloroethane dataset. One
drawback with this approach is that it increases the dimensionality of the data instead
of reducing it, which is one of the main motivations for employing PCA.

6 Related Research

The work presented here extends previous research carried out by the authors into
the use of machine learning methods with various pre-processing techniques for the
classification of spectral data [8]. That work is extended inthis paper by using these
machine learning methods in combination with the NIPALS PCAtechnique, and in-
vestigating the effect of different numbers of principal components on classification
accuracy. The most closely related research to this work canbe found in Sigurdssonet
al. [18], where they report on the use of neural networks for the detection of skin can-
cer based on Raman data that has been reduced using PCA. They achieve PCA using
singular value decomposition (SVD), a method which calculatesall the eigenvectors
of the data matrix, unlike the NIPALS method that was used here. In addition, they
do not present any comparison with neural networks on the rawdata without the PCA
step.

As far as the authors are aware, few studies have been carriedout that investigate
the effect of using PCA with a number of machine learning algorithms. Popelin-
sky [19] does analyse the effect of PCA (again, eigenvector decomposition is used)
on three different machine learning algorithms (Naive Bayes, C5.0 and an instance-
based learner). In this paper, the principal component scores are added to the original
attribute data and he has found this to result in a decrease inerror rate for all methods
on a significant number of the datasets. However, the experiments were not based
on particularly high dimensional datasets. It is also worthnoting that there does not
appear to be much evidence of the use of NIPALS PCA in conjunction with machine
learning for the classification of high dimensional data.

7 Conclusions

This paper has proposed the use of an efficient PCA method, NIPALS, to improve
the performance of some well known machine learning methodsin the classification
of high dimensional spectral data. Experiments in the classification of Raman spec-
tra have shown that, overall, this PCA method improves the performance of machine
learning when dealing with such high dimensional data. Furthermore, through the use
of PCA, these low errors were achieved despite a major reduction of the data; from



the original 1646 attributes of Acetaminophen to at least six attributes. Additional
experiments have shown that it is not necessary to generate more than twenty PCs to
find an optimal set for the spectral dataset used, as the performance of the majority of
classifiers degrades with increasing numbers of PCs. This fact makes NIPALS PCA
particularly suited to the proposed approach, as it does notrequire the generation of all
PCs of a data matrix, unlike the widely used eigenvector decomposition methods. This
paper has also shown that the pre-processing technique of first derivative followed by
normalisation improves the performance of the majority of these machine learning
methods in the identification of Acetaminophen. Further experiments on the Chlo-
rinated dataset confirmed the benefits of using PCA, but also highlighted that poor
results can be achieved when PCA is used in combination with rule-based learners,
such as C4.5 and RIPPER.

Overall, the use of NIPALS PCA in combination with machine learning appears
to be a promising approach for the classification of high dimensional spectral data.
This approach has potential in other domains involving highdimensional data, such as
gene-expression data and image data. Future work will involve testing this approach
on more spectral datasets and also on other high dimensionaldatasets. Further inves-
tigations could also be carried out into the automatic selection of parameters for the
techniques considered, such as the number of PCs, kernel parameters for SVM andk
for k-NN.
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