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Abstract. The identification of narcotics using high dimensional spectral data
poses an interesting challenge to machine learning, as the presenck oiihig
bers of redundant or highly correlated attributes can seriously degladsifi-
cation accuracy. This paper investigates the use of Principal CompAnaly-

sis (PCA) to reduce spectral data and to improve the predictive peafarenof
some well-known machine learning methods. Experiments are carrteshoa
high dimensional Raman spectral dataset, in which the task is to identify-Aceta
minophen, a pain-relieving drug, within a mixture. These experimentdaymp
the NIPALS (Non-Linear Iterative Partial Least Squares) PCA metaadethod
that has been used in the field of chemometrics for spectral classificatidn

is a more efficient alternative than the widely used eigenvector decatiopos
approach. The experiments show that the use of this PCA method caovienpr
the performance of machine learning in the classification of high dimesaion
spectral data.

1 Introduction

Automatic identification of illicit materials using Ramapestroscopy is of significant
importance for law enforcement agencies. In recent yeammdR spectroscopy has en-
joyed a strong resurgence in popularity due to advanceseineibhnology that have
resulted in more sensitive and lower cost instruments. Tdledimensionality of spec-
tral data can pose problems for machine learning as preelintodels based on such
data run the risk of overfitting. Furthermore, many of theilattes may be redundant
or highly correlated, which can also lead to a degradatigorediiction accuracy. Typ-
ically, methods from a field of study known as chemometriageHzeen applied to this
particular problem [1], and these methods use PCA to hahdleigh dimensional spec-
tra. PCA is a classical statistical method for transformattgbutes of a dataset into a
new set of uncorrelated attributes called principal conemts (PCs). PCA can be used
to reduce the dimensionality of a dataset, while still rd@teg as much of theariabil-

ity of the dataset as possible. The goal of this research is &ndigte if PCA can be
used to improve the performance of machine learning metimatie identification of a
material based on spectral data.



In the first set of experiments presented in this paper, thiepeance of five com-
petitive and well-known machine learning techniques (Suppector Machines, k-
Nearest Neighbours, C4.5 Decision Tree, RIPPER and Naiye®along with clas-
sification by Linear Regression are compared by testing theana Raman spectral
dataset. A number of pre-processing techniques such aslisation and first deriva-
tive are applied to the data to determine if they can imprbeectassification accuracy
of these methods. A second set of experiments is carriedouich PCA and machine
learning (and the various pre-processing methods) areinsmanbination. This set of
PCA experiments also facilitates a comparison of machiamlag with the popular
chemometric technique of Principal Component RegresdiR(), which combines
PCA and Linear Regression.

The paper is organised as follows. Section 2 will give a ktedcription of Raman
spectroscopy and outline the characteristics of the dataduces. Section 3 describes
PCA and the PCR method that incorporates PCA into it. Sectignovides a brief
description of each machine learning technique used inrthéstigation. Experimental
results along with a discussion are presented in Sectioed&idd 6 describes related
research and Section 7 presents the conclusion of this.study

2 Raman Spectroscopy

Raman spectroscopy is the measurement of the wavelengtim@ndity of light that
has been scattered inelastically by a sample, known as thaReffect [2]. This Raman
scattering provides information on the vibrational mosiari molecules in the sample
compound, which in turn provides a chemical fingerprint.ig\@mpound has its own
unigue Raman spectrum that can be used for sample identificd&ach point of a
spectrum represents the intensity recorded at a partisigaelength. A Raman dataset
therefore has one attribute for each point on its constitepectra. Raman spectra can
be used for the identification of materials such as narcfticand explosives [3].

Raman spectra are a good example of high dimensional datanamspectrum is
typically made up of 500-3000 data points, and many datasatsonly contain 20-
200 samples. However, there are other characteristics mfaRaspectra that can be
problematic for machine learning:

— Collinearity: many of the attributes (spectral data points) are highlyetated to
each other which can lead to a degradation of the predictioaracy.

— Noise: particularly prevalent in spectra of complex mixtures.dieve models that
are fitted to noise in a dataset will not perform well on otlest tlatasets.

— Fluorescence: the presence of fluorescent materials in a sample can ob#wire
Raman signal and therefore make classification more diffitjl

— Variance of Intensity: a wide variance in spectral intensity occurs between differ
sample measurements [4].

3 Principal Component Analysis

In the following description, the dataset is representethieymatrix X, whereX is a
N x p matrix. For spectral applications, each row.f the p-vectorz; contains the



intensities at each wavelength of the spectrum samtach columnX; contains all
the observations of one attribute. PCA is used to overcometaviously mentioned
problems of high-dimensionality and collinearity by rethgcthe number of predictor
attributes. PCA transforms the set of inpiXig, Xo, ..., Xy into another set of column
vectorsTy, Ts, ..., Ty where theT’s have property that most of the original data’s
information content (or most of its variance) is stored ia tinst few1”s (the principal
component scores). The idea is that this allows reductitimeoflata to a smaller number
of dimensions, with low information loss, simply by discengl some of the principal
components (PCs). Each PC is a linear combination of thénafignputs and each
PC is orthogonal, which therefore eliminates the problencadfinearity. This linear
transformation of the matriX is specified by @ x p matrix P so that the transformed
variablesI” are given by:

T = XP oralternativelyX is decomposed as follows = 7P7 (2)

where P is known as théoadings matrix. The columns loadings matrik can be cal-
culated as the eigenvectors of the matkiX X [5], a calculation which can be compu-
tationally intensive when dealing with datasets of 50088fributes. A much quicker
alternative is the NIPALS method [6]. The NIPALS method does calculate all the
PCs at once as is done in the eigenvector approach. Instéadafively calculates the
first PC, then the second and continues until the requiredbeurof PCs have been
generated. See Ryder [1] and O’Conretll. [4] for examples of the use of PCA in the
classification of materials from Raman spectra.

3.1 Principal Component Regression

The widely used chemometric technique of PCR is a two-steftivatiate regression

method, in which PCA of the data is carried out in the first stapthe second step,
a multiple linear regression between the PC scores obtaintdte PCA step and the
predictor variable is carried out. In this regression stie@ predictor variable is a value
that is chosen to represent the presence or absence ofdléitan sample, e.g. 1 for
present and -1 for absent. In this way, a classification modelbe built using any

regression method.

4 Machine Learning

4.1 Support Vector Machine

The SVM [7] is a powerful machine learning tool that is cagatl representing non-
linear relationships and producing models that generaleléto unseen data. For bi-
nary classification, a linear SVM (the simplest form of SVM)d$ an optimal linear
separator between the two classes of data. This optimalatepé the one that results
in the widest margin of separation between the two classea,veide margin implies
that the classifier is better able to classify unseen spélinegulate overfitting, SVMs
have a complexity parameter, which determines the trade-off between choosing a
large-margin classifier and the amount by which misclassg@mples are tolerated. A



higher value ofC’ means that more importance is attached to minimising theuamo
of misclassification than to finding a wide margin model. Tadia non-linear data,
kernels (e.g. Radial Basis Function (RBF), Polynomial @n®iid) are introduced to
map the original data to a new feature space in which a liregzarator can be found. In
addition to theC' parameter, each kernel may have a number of parametersasdoc
with it. For the experiments reported here, two kernels wesed: the RBF kernel, in
which the kernel widthg, can be changed, and the Linear kernel, which has no ex-
tra parameter. In general, the SVM is considered usefuldodhing high dimensional
data.

4.2 k-Nearest Neighbours

k-Nearest Neighbours (k-NN) [8] is a learning algorithm ehhclassifies a test sample
by firstly obtaining the class of thesamples that are the closest to the test sample. The
majority class of these nearest samples (or nearest saugiels wherk = 1) is returned

as the prediction for that test sample. Various measureshmajsed to determine the
distance between a pair of samples. In these experimestgtliidean distance mea-
sure was used. In practical terms, each Raman spectrum igacethto every other
spectrum in the dataset. At each spectral data point, tFerelifce in intensity between
the two spectra is measured (distance). The sum of the stidatances for all the data
points (full spectrum) gives a numerical measure of howectbg spectra are.
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The C4.5 decision tree [9] algorithm generates a seriestbkif rules that are repre-
sented as a tree structure. Each node in the tree corresfuoatisst of the intensity at a
particular data point of the spectrum. The result of a teehatnode determines which
node in the tree is checked next until finally, a leaf node é&hed. Each leaf specifies
the class to be returned if that leaf is reached.

4.4 RIPPER

RIPPER [10] (Repeated Incremental Pruning to Produce Regluction) is an induc-
tive rule-based learner that builds a set of prepositionlakrthat identify classes while
minimising the amount of error. The number of training exéapnisclassified by the
rules defines the error. RIPPER was developed with the golaflling large noisy
datasets efficiently whilst also achieving good genertitingperformance.

5 Experimental Results

5.1 Dataset

In the following experiments, the task is to identify aceitamphen, a pain-relieving
drug that is found in many over-the-counter medicatione @betaminophen dataset
comprises the Raman spectra of 217 different samples. mast@hen is present in
87 of the samples, the rest of the samples being made up @fugapure inorganic
materials. Each sample spectrum covers the range 350-2000 and is made up of
1646 data points. For more details on this dataset, see Q&liat al. [4].



5.2 Comparison of Machine Learning Methods

Table 1 shows the results of six different machine learnlagsification methods using
a 10-fold cross-validation test on the acetaminophen data$e first column shows
the average classification error achieved on the raw dat@ggt The three remaining
columns show the results of using each machine learningodethtandem with a
pre-processing technique:

— ND: dataset with each sample normalised. Each sample idetha@cross by the
maximum intensity that occurs within that sample.

— FD: a Savitzky-Golay first derivative [11], seven-point eaging algorithm is ap-
plied to the raw dataset.

— FND: a normalisation step is carried out after applying & fierivative to each
sample of the raw dataset.

Table 1.Percentage Error in Identifying Presence of Acetaminophen, usitamugaML Methods
in combination with various Pre-processing Techniques

Pre-processing Technique

Method RD ND FD FND
Linear SVM 6.45 2.76 3.23 0.92*
(C=100) (C=1 (C=10000) (C=0.1)
RBF SVM 5.07 2.76 1.84 0.92*
(C=1000, 0=0.1) (C=1000, 0=0.001) (C=10000, s=10) (C=10, 0=0.01)
k-NN 11.06 7.83 4.61 4.15
(k=1) (k=1) (k=10) (k=1)
C4.5 10.14 7.83 1.84 1.38
RIPPER 15.67 11.06 3.69 2.3
Naive Bayes 25.35 13.82 25.81 5.53
Linear Reg. 27.65 16.13 25.35 20.28

Table 1 shows the lowest average error average achievedthycksssifier and pre-
processing combination. For all these methods, apart frdihkthe WEKA [8] imple-
mentation was used. The default settings were used for RIPRER and Naive Bayes.
For SVMs, RBF and Polynomial kernels with different paraenetettings were tested.
The parameter settings that achieved the best results@ase$h parentheses. The Lin-
ear SVM was tested for the following values@f 0.1, 1, ...,10000. The same range
of C values were used for RBF SVM, and these were tested in cotmnaith theo
values 0f:0.0001, 0.001, ..., 10. For k-NN, the table shows the value fle{number of
neighbours) that resulted in the lowest percentage erlw.KFNN method was tested
for all values ofk from 1 to 20. The results of each machine learning and pregasing



technique combination of Table 1 were compared using agh&itest based on a 5%
confidence level and using a corrected variance estimajeTh2 lowest average error
over all results in Table 1 of 0.92% (i.e. only two misclagsifions, achieved by both
Linear and RBF SVM) is highlighted in bold and indicated byeaterisk. Those results
which do not differ statistically from the best results (@ting to the t-test) are also
highlighted in bold.

On both the raw (RD) and normalised (ND) dataset, both SVM efeogerform
better than any of the other machine learning methods, as theo significant differ-
ence between the best overall result and the SVM results oMDND, whereas a
significant difference does exist between the best overalllt and all other machine
learning methods on RD and ND. This confirms the notion tha¥iSére particularly
suited to dealing with high dimensional spectral data aradsid suggests that SVMs
are capable of handling a high degree of collinearity in thiadLinear Regression, on
the other hand, performs poorly with all pre-processinditégues. This poor perfor-
mance can be attributed to its requirement that all the cotuof the data matrix are
linearly independent [5], a condition that is violated in highly correlated spattata.
Similarly, Naive Bayes has recorded a high average errohemD, ND and FD data.
This is presumably because of its assumption of indeperdaineach of the attributes.
It is clear from this table that the pre-processing techesqof FD and FND improve
the performance of the majority of the classifiers. For SVMs, error is numerically
smaller, but not a significant improvement over the RD and B&uits. Note that Lin-
ear Regression is the only method that did not achieve attestbmpete with the best
overall result.

Overall, the SVM appears to exhibit the best results, matgclor outperforming
all other methods on the raw and pre-processed data. Wiglete# pre-processing,
however, the performance of other machine learning metbadse improved so that
they are close to that of the SVM.

5.3 Comparison of Machine Learning methods with PCA

As outlined in Section 3, PCA is used to alleviate problenthsas high dimensionality
and collinearity that are associated with spectral datath@next set of experiments,
the goal was to determine whether machine learning methodisl benefit from an
initial transformation of the dataset into a smaller set 66Pas is used in PCR. The
same series of cross-validation tests were run, exceptdic#ise, during each fold the
PC scores of the training data were fed as inputs to the madsémning method. The
procedure for the 10-fold cross-validation is as follows:

1. Carry out PCA on the training data to generate a loadingexma

2. Transform training data into a set of PC scores using teeficomponents of the
loadings matrix.

3. Build a classification model based on the training PC scdata.

4. Transform the held out test fold data to PC scores usingp#dtings matrix gener-

ated from the training data.

Test classification model on the transformed test fold.

6. Repeat steps 1-5 for each iteration of the 10-fold cradistation.

o



With each machine learning and pre-processing method acatibn, the above 10-
fold cross-validation test was carried out 81 to 20 principal components. There-
fore, 20 different 10-fold cross-validation tests were fonNaive Bayes, for example.
For those classifiers that require additional parametdys get, more tests had to be run
to test the different combinations of parameters, €.gs, and P for RBF SVM. The
same ranges far’, o andk were tested as those used for the experiments of Table 1.

Table 2. Percentage Error in Identifying Presence of Acetaminophen, usitmugaML Methods
(and Pre-processing Techniques) with PCA

Pre-processing Technique

Method RD ND FD FND

Linear SVM 5.07 1.84 3.23 0.46
(P=18,C=0.1) (P=13,C=0.1) (P=14,C=0.01) (P=4,C=0.1)

RBF SVM 6.91 2.76 2.23 0.46

(P=19,C=100, (P=16,C=10, (P=12, C=10, (P=5,=10,
0=0.001)  0=0.001)  0=0.001)  ©=0.001)

k-NN 11.06 5.99 23 0.0*
(P=17k=3) (P=10k=1) (P=14k=1) (P=4k=5)
C4.5 7.83 7.37 7.37 1.38
(P=20) (P=19) (P=5) (P=6)
RIPPER 11.98 8.29 6.45 2.3
(P=20) (P=8) (P=5) (P=3)
Naive Bayes 38.71 10.6 11.52 3.23
(P=12) (P=8) (P=5) P=2)
PCR 9.22 5.53 8.29 1.38
(PCA+Linear Reg.) (P=16) (P=20) (P=11) (P=80)

Table 2 shows the lowest average error achieved by each natidn of machine
learning and pre-processing method with PCA. The numberGs &sed to achieve
this lowest average error is shown in parentheses, alorgthét additional parameter
settings for the SVM and k-NN classifiers. As with Table 1, biest result over all the
results of Table 2 is highlighted in bold and denoted by aarsit, with those results
that bear no significant difference from the best overallltedso highlighted in bold.
Again, the pre-processing method of FND improves the peréorce of the majority
of the classifiers, Naive Bayes being the exception in thi® cln comparing the best
result of Table 1 with the best result of Table 2 for each maehearning method (all
in the FND column), it can be seen that the addition of the P@f sesults in either
the same error (C4.5 and RIPPER) or a numerically smaller écinear SVM, RBF
SVM, k-NN and Linear Regression). The improvement effettgthe inclusion of this



PCA step is particularly evident with the Linear Regresgirhnique. Note that this
combination of PCA and Linear Regression is equivalent t& PC

Despite the fact that for the SVM and k-NN classifiers, thened significant differ-
ence between the best results with or without PCA, it is notéwy that the SVM and
k-NN classifiers with PCA were capable of achieving such lovers with far fewer
attributes, only four PCs for the Linear SVM and k-NN and 5 P@@she RBF SVM.
This makes the resulting classification model much moreieffiavhen classifying new
data. In contrast, PCR required a much greater number of 8} ¢ achieve its lowest
error. (This result was discovered in the experiment deddil the next section.)

To make an overall assessment of the effect of using PCA inbamation with
machine learning, a statistical comparison (paired tugéigt 5% confidence level) of
the 28 results of Table 1 and Table 2 was carried out. Thic#@tds that, overall, a
significant improvement in the performance of machine lis@rmimethods is gained
with this initial PCA step. It can therefore be concluded tie incorporation of PCA
into machine learning is useful for the classification ofrhiimensional data.

5.4 Effect of PCA on Classification Accuracy

To further determine the effect of PCA on the performance atinne learning meth-
ods, each machine learning method (using the best parasedtieg and pre-processing
technique) was tested using larger numbers of PCs. Eaclotheths tested for values
of P in the range 1-640. Figure 1 shows the change in error of sdrtteeanethods
versus the number of PCs retained to build the model.
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Fig. 1. Effect of changing the number of PCs on Machine Learning Classific&iicor

It can be seen from this graph that as PCs are added, errdiafiyrreduced for all
methods. Most methods require no more than six PCs to acthiedewest error. After
this lowest error point, the behaviour of the methods df@mewhat. Some classifiers



suffer drastic increases in error within the range of PCetePCR, RBF SVM, and
k-NN (although not to the same extent as the previous exanphecontrast, the error
for C4.5 never deviates too much from its lowest error at €8s.PThis may be due to
its ability to prune irrelevant attributes from the decistoee model. The Linear SVM
initially seems to follow the pattern of the majority of céifgers, but then returns to
a more acceptable error with the higher number of PCs. Qyéra evident that all

of the classifiers, apart from PCR, will achieve their bestuaacy with a relatively
small number of PCs; it is probably unnecesary to generatename than twenty PCs.
However, the number of PCs required will depend on the uphgrldataset. Further
experiments on more spectral data, or other examples of dilgbnsional data, are
required to determine suitable ranges of PCs for these madf@rning methods.

6 Related Research

The most closely related research to the work presentedtharee found in Sigurdsson
et al. [13], where they report on the use of neural networks for thction of skin
cancer based on Raman data that has been reduced using R&y4eFform PCA using
singular value decomposition (SVD), a method which catesiall the eigenvectors of
the data matrix, unlike the NIPALS method that was used heraddition, they do not
present any comparison with neural networks on the raw diteout the PCA step.

As far as the authors are aware, few studies have been catrdtat investigate
the effect of using PCA with a number of machine learning atgms. Popelinsky [14]
does analyse the effect of PCA (again, eigenvector decatipos used) on three dif-
ferent machine learning algorithms (Naive Bayes, C5.0 anidstance-based learner).
In this paper, the principal component scores are addedetoriiginal attribute data
and he has found this to result in a decrease in error ratdlforedghods on a signifi-
cant number of the datasets. However, the experiments ve¢fgased on particularly
high dimensional datasets. It is also worth noting thatetteres not appear to be any
evidence of the use of NIPALS PCA in conjunction with macHaerning for the clas-
sification of high dimensional data.

7 Conclusions

This paper has proposed the use of an efficient PCA methodUHPto improve the
performance of some well-known machine learning methodhénidentification of
materials based on high dimensional spectral data. Expetsrin the classification of
Raman spectra have shown that, overall, this PCA methodoweprthe performance
of machine learning when dealing with high dimensional datathermore, through
the use of PCA, these low errors were achieved despite a meajaction of the data;
from the original 1646 attributes to at least six attributsdditional experiments have
shown that it is not necessary to generate more than twergytdfihd an optimal set
for the spectral dataset used, as the performance of theitgajbclassifiers degrades
with increasing numbers of PCs. This fact makes NIPALS PC#aiqdarly suited to
the proposed approach, as it does not require the geneddtadiPCs of a data matrix,
unlike the widely used eigenvector decomposition methdtis paper has also shown



that the pre-processing technique of first derivative fe#d by normalisation improves
the performance of the majority of these machine learninthots in the classification
of the dataset used.

Overall, the use of NIPALS PCA in combination with machinarleing and the first
derivative with normalisation pre-processing techniqppears to be a promising ap-
proach for the classification of high dimensional spectashdFuture work will involve
using this approach for the identification of other materizhsed on Raman spectra,
with tests also being carried out on other high dimensiomghskts. This work will
also investigate the automatic selection of parameterthése techniques, such as the
number of PCs, kernel parameters for SVM anir k-NN.
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